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ABSTRACT 

In the United States, about 27% of the bridges are classified as structurally 

deficient or functionally obsolete. Bridge owners are continually investigating methods to 

effectively retrofit existing bridges, or to economically replace them with new ones. 

Modern composite materials for structural applications, at one time only in the domain of 

aerospace engineering, are increasingly making their way into civil engineering 

applications. In addition to retrofitting current concrete and steel structures using FRP 

sheets or plates, a great deal of work is being conducted to develop versatile, fully-

composite structural bridge systems.  

To reduce the self-weight and also achieve the necessary stiffness, sandwich 

panels are usually used for bridge decks.  However, due to the geometric complexity of 

the FRP sandwich, convenient methods for bridge design have not been developed. 

The present study aims at developing finite element modeling techniques for sandwich 

structures. Parametric studies are carried out with the objective of developing equivalent 

elastic properties, which would be useful parameters in design. A distinction is made 

between in-plane and out-of-plane behavior, and properties are derived accordingly. 

The performance of the sandwich, such as the interface stress between the flange and 

wearing surface can be evaluated. Therefore, through finite element modeling, 

optimization can be achieved in order to minimize the interface stress. The contribution 

of stiffness of the wearing surface to structural performance, a factor which is not 

usually accounted for in typical design procedures, is also examined. An effort is also 

made to analyze the temperature effects on the structure’s performance. A conceptual 
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approach aimed at studying the thermal performance of the panel due to both uniform 

and gradient temperature variations is presented.  
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CHAPTER 1 -  INTRODUCTION 

1.1 General Background 

Highway bridge decks in the US are constructed predominantly with steel-

reinforced concrete. However, costs of repair and maintenance of these bridges 

incurred at the federal and state levels are overwhelming. As a result, for many years 

there has been pressure on transportation agencies to find new cost-effective and 

reliable construction materials (Ehlen 1999). A very promising alternative is the fully-

composite Fiber Reinforced Polymer (FRP) structural bridge system. FRP composites 

have found increasing applications in bridge design and construction. To improve its 

structural performance, honeycomb core sandwich panels are used. A special 

configuration of this panel type is the sinusoidal core geometry which extends vertically 

between face laminates. This research work focuses on this novel technology 

developed by Kansas Structural Composites, Inc.  

It is well known that FRP possesses significant advantages, which might in the 

future present a very good challenge to the more ubiquitous steel, reinforced concrete 

and others in the construction field. One main driving force in the use of FRP has been 

its high strength and stiffness when determined on a weight basis. One source shows 

that a FRP bridge deck weighs about 20 percent as much as a structurally equivalent 

reinforced concrete deck (Murton 2001). The light weight of FRP makes it possible for 

smaller scale foundations and other supports to be used. Since many bridges in the US 

are categorized as deficient because of substructure problems or inadequate live load 

capacity, FRP bridge decks may be a good substitute (Zureick et al. 1995). 
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Among FRP’s high strength properties, the most relevant include durability and 

corrosion resistance. It is also resistant to chemical attack; hence, it has been 

suggested that little maintenance may be needed other than periodic wearing surface 

renewal.  

Because deck panels are manufactured in the factory and transported to the 

construction site, the production process can be closely monitored under a controlled 

environment. This leads to higher quality products. Potential weather delays can also be 

greatly reduced as is sometimes a problem with cast-in-place structures. There is also 

the merit of ease of manufacturing, fabrication, handling and erection, with the project 

delivery and installation time being greatly reduced. 

Other benefits of the use of FRP include electromagnetic neutrality, anti-seismic 

behavior, versatility and fatigue endurance. It also possesses very high material 

toughness and resistance to abrasion. Additionally, it has aesthetic benefits. The bridge 

system can be specified in any color, since this can be pigmented into the resin. This 

therefore might make painting unnecessary, and gives the structure an attractive 

appearance.  

Like most structural materials, however, FRP has a few drawbacks. One 

noteworthy disadvantage is the high initial cost. It is interesting though, that this high 

cost can be economically justified as the life cycle cost may be reduced over the life 

time of the bridge (Ehlen 1999). This is so because as was noted above, maintenance 

cost of an FRP bridge could be relatively low due to high durability of the structure. This 

is of interest because rehabilitation and maintenance of reinforced concrete bridges has 

been an issue in the US in recent years. More than 200,000 bridges worth $78 billion 
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are in need of repair (Klaiber et al. 1987, Munley 1994). Over $5 billion per year in 

maintenance would merely maintain the status quo. A similar condition exists in Canada 

where, according to one report, over 40% of the bridges were built in the fifties and 

sixties, and most of these are in urgent need of rehabilitation (Nearle 1997). 

A concern for FRP bridge design is the lack of  design guidance and/or 

standards.  The design and manufacture also require highly trained specialists from 

many engineering and material science disciplines, and some manufacturing processes 

may  not produce consistent material or structural properties.   

A Load and Resistance Factor Design (LRFD) code for structures using FRP is 

being developed in the US. It will be based on a probability-based limit state design 

criteria. In addition, the American Society of Civil Engineers (ASCE) is currently 

engaged in research work for the purpose of developing a standard for the design of 

pultruded FRP composite structures. It is expected that when completed, this document 

will serve as the basis for the American Association of State Highway and 

Transportation Officials (AASHTO) design code for FRP structures (Scott and Wheeler 

2001). The results from this research work would no doubt provide valuable 

contributions. 

Although FRP structures have the advantage of being light in weight, this could 

render the structure aerodynamically unstable. Other demerits include ultraviolet 

radiation degradation, photo-degradation and a lack of awareness. 

Researchers over the last decade are addressing these issues, and the 

information is being disseminated in the wider engineering community. As part of this 
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ongoing research, this investigation addresses a special kind of bridge deck 

configuration – sandwich panels with honeycomb sinusoidal wave core. 

1.2 Aim and Objectives 

This report is aimed at utilizing finite element modeling techniques to evaluate 

the performance of fiber reinforced polymer sandwich bridge panels. It focuses 

specifically on a sinusoidal wave honeycomb core configuration sandwiched by face 

laminates, which was developed by Kansas Structural Composites, Inc. and proven to 

be stiffer than other configurations (Plunkett 1997). This panel geometry is shown in Fig. 

1.1. The terms which will be used to refer to the panel components are defined in Fig. 

1.2. The flats refer to the straight parallel components of the core, while the flutes 

represent the sinusoidal components.  

 
 

 

Figure 1.1: Sandwich panel configuration for this study. 
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To achieve the aim of this study, the following objectives are fulfilled: 

 Perform a comprehensive review on the development of various FRP panel types 

 Compute equivalent laminae stiffness properties from micromechanics 

 Compute equivalent stiffness properties for face laminates 

 Derive core equivalent stiffness properties for a specific sinusoidal core 

configuration using FEM (ANSYS 9.0), elasticity and plate theory 

 Perform parametric studies to derive equations for elastic moduli as functions of 

depth, flute-width, flute-wavelength, flat/flute thickness and core laminae Young’s 

Modulus 

 Derive equivalent stiffness properties of the entire deck system as a single layer 

Figure 1.2: Core component definitions. 
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 Perform parametric studies to derive equations for elastic moduli as functions of 

parameters of core and face laminates 

 Investigate behavior of panels with wearing surface 

 Perform temperature analysis 

 Draw conclusions and make recommendations based on the analytical results 

obtained  

1.3 Scope and Limitations of Study 

Using micromechanics and laminate theory, laminae stiffness and equivalent 

laminate properties will be computed. Core equivalent stiffness properties for the 

sinusoidal core configuration will be derived using finite element modeling, elasticity and 

plate theory. Equivalent properties of the entire sandwich panel as a single layer of plate 

will also be formulated. These properties will be verified by comparing results of the 

actual panel configuration with the equivalent model. Parametric studies to derive 

equations for equivalent elastic properties as functions of parameters of the core and 

face laminates will then be conducted. 

The panel with a layer of wearing surface will also be analyzed, with the intention 

of investigating the level of stress between the face laminate and the wearing surface as 

well as the contribution of stiffness of the overlay material. The behavior of different 

overlay materials will be studied. 

Temperature effects could be of significant importance in the behavior of FRP 

structures. Changes in temperature can cause high levels of stresses and deformations 

which could become significant when combined with truck loads. Hence, the effects of 

temperature on the bridge panel will also be investigated. 
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One of the major limitations in this research is linked to the complexity of the 

sinusoidal core model configuration. The finite element software used for this research 

(ANSYS 9.0 University Advanced version) lacks the processing capacity to handle an 

actual full bridge model. For instance, to build a very small model of 15 ft x 7.5 ft x 5 in. 

would require about 133,200 elements since a minimum of 4 elements are required to 

model a sine wave, whereas the element capacity of our available software is 128,000. 

As a result, a complete modeling of a full bridge is not possible for this deck 

configuration. 

1.4 Chapter Layout 

After the brief introduction in this chapter, a detailed literature review which 

includes a State-of-the-Art review is presented in Chapter 2. A discussion on an 

approach to deriving equivalent properties due to in-plane behavior follows in Chapter 3. 

Based on this approach, parametric studies for the core are conducted in Chapter 4 with 

a view to formulating equations for equivalent elastic properties. Attention is then turned 

to out-of-plane behavior in Chapter 5 where an approach of predicting equivalent 

stiffness properties is established. Correspondingly, equations to obtain these 

properties for varying panel parameters are derived in Chapter 6. A study of the 

stiffness contribution of a layer of wearing surface to the FRP panel of this work is next 

carried out in Chapter 7. Chapter 8 focuses on thermal analysis to present the reader 

with a broad view of the distribution of thermal stresses in the panel. Finally, 

conclusions are drawn and recommendations made for further research in Chapter 9. 
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CHAPTER 2 -  LITERATURE REVIEW 

2.1 Introduction 

Fiber Reinforced Polymers have been in use since the 1940’s. Due to heavy 

financial costs, however, the application of FRP was limited to the aerospace and 

defense industries. To meet the higher performance challenges of space exploration 

and air travel in the 60’s and 70’s, fiber materials with higher strength, higher stiffness 

and lower density (such as boron, aramid and carbon) were commercialized. During the 

1970’s, research was channeled to developing ways to improve the cost of high 

performance FRP’s. By the late 1980’s and early 1990’s, the defense industry waned 

and emphasis was now placed on cost reduction and the continued growth of the FRP 

industry (Bakis et al. 2002). 

Although Fiber Reinforced Polymers have had a long history, it is only in recent 

years that it has won the attention of Civil Engineers as a potential alternative to more 

conventional structural materials. Throughout the 1990’s, various industries have 

financed demonstration projects and sponsored research programs on this burgeoning 

field. As research continues, FRP materials are now finding wider acceptance in the 

construction industry.   

2.2 State-of-the-Art Review 

Prior to the 1970’s, pultruded FRP structural shapes were developed but limited 

to small sized commodity products for non-structural applications. In the 1970’s and 

1980’s, larger pultruded shapes for structural purposes and load-bearing elements were 

produced largely as a result of the advancement in pultrusion technology. Pultrusion 

companies in the United States began to produce “standard” I-shaped beams for 
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construction purposes. A customized building system of pultruded components for the 

construction of industrial cooling towers was developed in the late 1980’s and 1990’s. 

Small pultruded FRP structural shapes for the construction of walkways and short-span 

pedestrian bridges have increased in use since the early 1990’s (Bakis et al. 2002). 

Several bridges have been constructed in various parts of the world using FRP. 

These include both pedestrian and vehicular bridges. One example is Aberfeldy 

Footbridge which crosses the River Tay in Scotland erected in 1992 and is the world’s 

first and longest advanced composite footbridge. Another example is the Bonds Mill lift 

bridge (completed in 1994) which is an electrically operated lift bridge. It was the first 

bridge in England to be constructed from plastic. Tech 21 (Smith Road) Bridge is Ohio’s 

first all-composite bridge. The Butler County Engineer's Office installed this structure 

built entirely of advanced composite materials.  

Some of the first applications of fiber-reinforced plastics for complete bridge 

structures were in China. A number of pedestrian bridges have been built, but the first 

all composite bridge deck was the Miyun Bridge completed in September 1982 near 

Beijing, which carries full highway traffic. Ulenbergstrasse Bridge in Germany was the 

world’s first in the use of high tensile strength glass fiber prestressing tendons. More 

details about these bridges are considered in Section 2.7.  

2.3 Types of FRP Panels 

FRP decks can be grouped into two categories based on the type of construction 

– sandwich and adhesively bonded pultruded shapes. In this research work, focus is 

directed on a honeycomb core sandwich deck. However, an overview of both types is 

first given. 
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2.3.1 Sandwich Construction 

This type of construction meets the requirement of high strength and stiffness at 

a minimum unit weight. Use is made of bonded core materials, separating strong, stiff 

and low density face sheets. The entire deck is made to act compositely. A great 

advantage this type of construction has is its flexibility in designing structures for varied 

depths and deflection requirements. This is so since the manufacturing of face and core 

components can be controlled by the producer. The most efficient core materials are 

cellular materials (Bakis et al. 2002). 

The connection between sandwich deck panels is usually by tongue and groove 

ends. A clamp mechanism is used to join the panels with the underlying structure. A 

major problem experienced by this mode of construction is delamination and this may 

be due to some manufacturing defects. Hence, special focus must be given to the 

connection details during the design and production stages. 

One example of this panel type is the sinusoidal wave core configuration in the 

plane extending vertically between face laminates. The geometry of this panel can be 

seen in Fig. 2.1. Another example is the web core geometry with a two-way vertical 

interior core. It has transverse and longitudinal web configuration making it look like a 

box, as can be seen from Fig. 2.2. 

2.3.2 Adhesively Bonded Pultruded Shapes 

Pultruded shapes are produced by manufacturers using well-established 

processing techniques. These shapes can be grouped into two – standard and custom. 

The term “standard” implies that the FRP part are produced on a regular basis by the 

company, are usually available off-the-shelf, have published dimensions and meet 
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minimum manufacturing-provided property values (Bakis et al. 2002). Examples include 

“standard” angles, tubes, channels and I-shaped sections. Nonstandard shapes are 

called “custom” shapes. 

FRP decks produced by adhesively bonded pultruded shapes include EZSpan 

(Atlantic Research), Superdeck (Creative Pultrusions), DuraSpan (Martin Marietta 

Materials) and Strongwell. The pultruded shapes are typically aligned transverse to the 

direction of traffic flow. Fig. 2.3 shows a schematic diagram of the DuraSpan pultruded 

deck system. 

 

 

 

 

Figure 2.1: Fiber reinforced polymer honeycomb (FRPH) sandwich panel. 
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Figure 2.2: Web core sandwich bridge deck system. 

Figure 2.3: DuraSpan® deck system by Martin Marietta Composites, Inc. 
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2.4 Analysis of Sinusoidal Wave Core Sandwich Panel 

The introduction of FRP honeycomb sandwich panels with sinusoidal wave core 

configuration in the vertical plane between face laminates was done by Plunkett (1997). 

He investigated the potential of this kind of configuration through a series of studies for 

testing and field installations. The geometry of this sandwich structure is designed to 

improve stiffness and buckling response by the continuous support of core elements 

with the face laminates. 

A study by Davalos et al. (2001) went further in design modeling and 

experimental characterization, and obtained an approximate analytical solution through 

a homogenization process. To verify the results, experiments were performed and finite 

element analysis (numerical verification) was carried out. The goal of that study was to 

develop equivalent elastic properties for the core structure. To achieve this, an energy 

method combined with mechanics of materials approach was used. 

In performing elastic equivalence analysis of the sinusoidal waved honeycomb 

core structure, Davalos et al. (2001) utilized energy concepts. He assumed that the 

structure of the sandwich core could be separated into a number of substructures of flat 

and curved walls, which could be simplified as a series of simply supported elements. 

Using the theory of minimum energy, the strain energy computed from the exact 

displacement distribution was minimized. The strain energy of a Representative Volume 

Element (See Fig. 2.4) – a unit cell of the core – of the structure was computed from the 

Voigt and Reuss model for upper and lower bounds as below: 

( )
2

12 =

≤ + +∑
σ n

ij
b s a k

kij

V U U U
C

 Equation 2.1 
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( )
2

12 =

≤ + +∑
ε n

ij ij
b s a k

k

C
V U U U  Equation 2.2 

where k takes into account individual substructures, Ub is the strain energy due to 

bending response, Us represents the strain energy due to shear response and Ua 

refers to the strain energy due to axial response. In Fig. 2.4, the amplitude of the 

sinusoidal wave core is 2h. 

The loading arrangement used to obtain the elastic constants involved applying 

each single principal stress or strain to obtain the corresponding stiffness without other 

types of strain energy involved. When this load is applied, the strain energy in Equations 

2.1 and 2.2 becomes: 

s 2 2 2n
11 11 11 11 44 12

k 1 0 k

M N h VU ds
2 2 2=

⎧ ⎫⎛ ⎞δ α⎪ ⎪= + +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∫  Equation 2.3 

where M11, N11, V12 refer to the bending moment, axial force and transverse shear 

force acting on the core wall, and 11δ , 11α  and h44 are the corresponding compliance 

coefficients.  

To compute the modulus of elasticity in the lateral (y) direction, a uniform stress q 

was applied in that direction. Using Equation 2.3, the internal strain energy U was 

calculated. The bending moment M11, axial force N11 and shear force V12 were obtained 

from equilibrium and geometric considerations of Fig. 2.5. Thus, the compliance 

coefficients 11δ , α11 and h44 could be calculated. The results obtained for these 

coefficients are shown in Equation 2.4. 

11 3
1 2

12
=δ

E t
, 11

1 2
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E t
, 44

13 2
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G t

, 11
1 1
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E t

 Equation 2.4 
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where, t1 and t2 are the thicknesses of the flat and corrugated core wall respectively 

(Fig. 2.4) and κ is the shear correction factor. 

 

 
 
 

Figure 2.4: Representative Volume Element (RVE). 

t2 

t1/2 

H=4h+2t1+2t2 

t1 

t1/2 

l 



 16

 

 

 

 

The apparent strain of the RVE yε  was then computed using Castigliano’s 

second theorem which states that the partial derivative of the strain energy with respect 

to the external force gives the displacement corresponding to that force. Therefore, 

( )
∂

Δ = =
∂

εy y
UH
ql

 Equation 2.5 

Similarly, 

1 1( )
′∂

Δ = = =
∂

εx x
U Fll
F E t

 Equation 2.6 

The equivalent modulus of elasticity e
yE  and the Poisson’s ratio e

yxv  for the RVE 

could then be calculated using the relation in Equation 2.7: 

=
ε

e
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qE , Δ
= − =

Δ
ε
ε

e x x
yx

y y

Hv
l

 Equation 2.7 

where q is the applied stress (Fig. 2.5) and yε  and xε  are the computed strain from 

Equations 2.5 and 2.6. 

Figure 2.5: Coordinate and equilibrium condition for computation of e
yE . 
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To obtain the equivalent stiffness in the longitudinal (x) direction, the same 

approach was followed, applying a uniform stress in the x-direction. However, Davalos 

et al. (2001) assumed that the stiffness contribution in the curved substructure is 

negligible, leading to an approximate solution for e
xE as shown in Equation 2.8. 

1
1

2
=e

x
tE E

H
 Equation 2.8 

Another research project carried out by Qiao et al. (2003) went further to 

evaluate the core effective in-plane shear modulus of the sinusoidal core configuration 

e
xyG using energy methods and mechanics of materials approach. He applied a 

macroscopic shear deformation on the same unit cell shown in Fig. 2.4. The strain 

energy in a quarter of the unit cell (Fig. 2.6) was given as: 

2 2 2 2

1 10

2
2 2 2

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠
∫
α α αs

M N VM N V F bU ds
E t

 Equation 2.9 

where, M, N and V represent bending moment, axial force and transverse shear force 

acting on the core, αM, αN and αV are the corresponding compliance coefficients and b 

is the quarter wave-length. From Castigliano’s theorem, 

0

0∂
=

∂
U
M

, 0∂
=

∂
U
P

, ∂ = Δ
∂ x
U
F

 Equation 2.10 

From these formulations, Qiao et al. (2003) came up with the solution for the core 

effective in-plane shear modulus as seen in Equation 2.11 below: 

e
xy

x

2FhG
b

τ
= =
γ Δ

 Equation 2.11 

They further verified their analytical formulation using experimental testing. The 

transverse and vertical moduli of elasticity (Ey and Ez) were evaluated using axial 
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compression tests, while the effective longitudinal elastic modulus (Ex) was obtained by 

a three point-bending test. The out-of-plane shear moduli (Gxz and Gyz) were derived 

from dynamic tests using piezoelectric sensors. 

In his master’s thesis, Kalny (2003) verified the equivalent elastic properties 

predicted by Davalos et al. (2001). He performed coupon tests on the actual 

manufactured core and face laminates from the same manufacturer (KSCI). From his 

results, he found that the predicted properties were all within 30% of those determined 

from actual coupon tests. 

In this present study, a verification of the equivalent properties of the face 

laminates is done using micromechanics, and the core equivalent properties are 

determined by means of a numerical approach. The properties are then utilized as input 

into a full-sized panel finite element analysis for verification purposes. A difference 

between in-plane and out-of-plane behavior is noted in this study. Parametric studies 

are also performed. The information obtained can be vital in design and optimization 

procedures. The effects of wearing surface and temperature on the panel are also 

examined. 

2.5 Construction Details 

The construction of four different FRP bridges is discussed in connection with 

details in construction issues. The four bridges are the Laurel Lick, Laurel Hill Creek, 

Wickwire Run and Market Street bridges. These bridges were among the some 20 

highway bridges which the Constructed Facilities Center at West Virginia University, in 

cooperation with FHWA and the West Virginia DOT-DOH were involved in rehabilitating 

(Shekar et al. 2002, GangaRao et al. 2001). 
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2.5.1 Deck Details 

The decks for the four bridges were fabricated by Creative Pultrusion Inc. under 

the trade name of Superdeck. They were all designed to AASHTO HS25-44 standard 

for live loading. The weight of the decks was about 20% of that of a reinforced concrete 

deck. The cross sections were made of hexagon and double trapezoids. The fibers 

used were E-glass multiaxial stitched fabrics with a chopped strand mat and continuous 

rovings. Vinylester resin was used as the matrix phase. 

2.5.2 Shipping and Handling 

Special hooks were provided by the manufacturer for the purpose of lifting up the 

deck modules. Care was taken to prevent any damage of the flanges. To accomplish 

this, nylon straps were utilized, and the lifting was done in such a way as to transfer the 

lifting load across the width of the module. To erect the superstructure, a crane was 

used, whose capacity depended on the size of the deck module.   

2.5.3 Surface Preparation 

The surfaces of the stringers and the modules were prepared prior to connecting 

both members. This preparation included sandblasting so as to remove dirt and grease 

from the surfaces. According to the Market Development Alliance of the FRP Composite 

Industry (quoted by Shekar et al. 2002), the edges of the modules have to be wiped 

clean with a cloth dipped in methyl ethyl ketone. As a precautionary measure, the 

surfaces of the modules and stringers were then covered with blankets until it was time 

for the bonding operation.   
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2.5.4 Assembly and Connections 

The assembled structure of all four bridges composed of the FRP deck modules 

aligned transversely to traffic flow and supported by girders. For three of the bridges 

(Laurel Lick, Laurel Hill Creek and Wickwire Run bridges), the connections of deck-to-

deck and deck-to-stringer were by means of both adhesive bonding and mechanical 

fasteners. The mechanical fasteners were in the form of shear keys which provided 

adequate shear transfer between modules. In the Market Street Bridge, the 

interconnection of deck-to-deck was done using adhesive bonding only. The modules 

were connected to steel plate girders by field welding. A steel washer plate was then 

used to tie the deck down to the girder.   

2.5.5 Wearing Surface 

For all four bridges, thin polymer concrete (PC) was used as the overlay material. 

First, surface preparation was carried out. This included sandblasting the deck to get rid 

of impurities on the surface and improve the bonding. Vacuum cleaning was done to 

eliminate polymer powder produced during surface preparation. A urethane-based 

primer was applied. Care was taken to deal with effects in temperature variations during 

the curing phase of the overlay. The laying of the wearing surface was done “when the 

temperature was above 50◦F and below 80◦F”. This was done to prevent the PC from 

curing faster or slower than needed (Shekar et al. 2002). 

2.6 Manufacturing Processes 

There are different manufacturing methods used in the production of structural 

composites. Examples include hand lay-up, Vacuum-Assisted Resin Transfer Molding 
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(VARTM), pultrusion, vacuum bag molding, press molding and autoclave molding 

(Zureick et al. 1995). 

2.6.1 Hand Lay-Up 

This is a manual approach in which layers of fabric and resin are successively 

applied onto a mold. The mold is first designed to the shape of the final composite 

structure. This method is perhaps the simplest, oldest and least complicated. The fiber 

layers are oriented in such a way as to develop the desired strength and stiffness. After 

each layer of fabric is placed, a roller is used on the composite so that a strong bond 

results and excess resin is squeezed out. The stacking of fabric materials and resin is 

done until the required thickness is achieved. 

This method is labor intensive and only suitable for production in low volume. It 

can have a disadvantage of low quality control and inconsistency in properties of 

various parts of the finished product. However, with this method, complicated shaped 

composites can be manufactured, such as the complex core configuration of the 

sinusoidal honeycomb panel. 

In recent years, the advances in manufacturing technology have resulted in some 

improvement in this manual process. Today, the hand lay-up has become automated in 

several applications. 

2.6.2 Vacuum-Assisted Resin Transfer Molding (VARTM) 

In this process, dry fabrics needed to produce the structural component are 

stacked together successively. The fabric is placed in an open mold surface without a 

top. When the lay-up operation is completed, the mold is covered, and a vacuum is 

applied to consolidate the material. Resin is then allowed to flow and disperse through 
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the entire structural network, with the mold kept under vacuum. The resin is cured under 

ambient conditions. 

This process has a great advantage of comparatively low cost of production, 

since the materials, molds, equipments are inexpensive. It is also advantageous over 

many other methods because of minimized environmental hazards from toxins 

associated with the process. The mold is sealed during the resin application, thus 

controlling environmental threats and reducing health risks of workers. 

2.6.3 Pultrusion 

This method is used primarily to produce prismatic structural members. Fibers 

are passed through a resin bath to coat them. The coated fibers are then formed into 

the desired shapes and passed through a die that helps to consolidate the fibers and 

produce a composite with a high fiber volume fraction. Then the full section emerges. 

The resulting shape of the final section depends on the way the die is fabricated. 

2.6.4 Vacuum Bag Molding 

The purpose of this process is to create a very good bond for the individual plies. 

The entire composite is placed into a flexible bag and a vacuum is applied. This helps to 

push together the plies, thus developing a good bond. Volatiles that form during the 

curing process are also removed. 

2.6.5 Press Molding 

Here, high pressure and temperature are the catalysts to developing strong 

chemical bonds between layers. The composite material is placed into the press, where 

external pressure and elevated temperature are applied. Components of simple shape 

configurations are usually produced by this method. 
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2.6.6 Autoclave Molding 

The autoclave molding process allows for more complex shapes to be 

manufactured than does the press molding. A furnace is used to cure the composite at 

very high temperatures and pressure. The high pressures can force voids and excess 

resin out of the composite and increase the fiber volume fraction. Also, because the 

resin is cured at elevated temperatures, properties superior to those resulting from 

curing at ambient temperatures are developed.  

2.7 Bridge Applications of FRP 

The applications of FRP in civil engineering can be classified into three broad 

areas. First: in new construction. New structures such as bridges and columns built 

exclusively out of FRP have proved durable and very resistant to environmental 

hazards. A second, and more common application, is in the repair and rehabilitation of 

damaged or deteriorating structures. Third, FRP have been used in architectural or 

aesthetic applications such as in cladding, roofing, flooring and partitions. FRP can be 

used for barriers, docks, marinas, covers, blast shields, vehicle platforms for unstable 

ground, rapid construction, bridges, bridge decks, etc.  

FRP bridges (both pedestrian and vehicular) have been constructed in Asia/Far 

East, Europe, North America and the Caribbean. In this section, we highlight some 

noteworthy examples of the considerable recent developments in the diverse use of 

FRP in pedestrian and highway bridges in the world. 

2.7.1 Aberfeldy Footbridge 

This bridge, which crosses the River Tay in Scotland, was erected in 1992. It is 

the world’s first and also longest advanced composite footbridge (Scott and Wheeler 
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2001, Khalifa 1993). The bridge is a cable-stayed structure with a main span of 63 m 

(207 ft) and two back spans of 25 m (82 ft). The two pylons are each made of Glass 

FRP, are ‘A’ shaped and have a height of 18 m (59 ft). The cables are Parafil (Kevlar 

aramid fibers sheathed in a protective low density polyethylene). The fabrication of the 

bridge deck was from the Advanced Composite Construction System (ACCS). A unique 

method of erection of the towers, cables and deck was employed which needed no site 

cranage. This was made possible due to the lightweight components.  

Glass reinforced polyester (GRP) handrailing and a wear-resistant deck finish 

were used to complete the bridge. Minimal foundations and rapid site assembly made 

this solution very cost-effective. It was originally designed with a live load capacity of 3.5 

kN/m2 (0.5 psi), but has been strengthened since then to accommodate golf carts and 

had ballast added to improve its performance. 

2.7.2 Bonds Mill Lift Bridge 

Bonds Mill Bridge is an electrically operated lift bridge. It was the first bridge in 

England to be constructed from plastic (Hayes 1998). Its construction was completed in 

1994. It is also the world’s first advanced composite road bridge. It is 27 ft long, 14 ft 

wide and 2.8 ft deep and was manufactured from Maunsell Structural Plastics’ 

Advanced Composites Construction System (ACCS). It was constructed utilizing a 

series of pultruded GRP sections running longitudinally and are bonded together using 

an epoxy resin to form a cellular box girder with six main cells which are filled with 

epoxy foam. The deck is a ‘double ply’ of ACCS skins with cells running in two 

orthogonal directions. The total weight of the entire system is 4.5 tons (10 kip) for 35 m2 

(377 ft2) of deck area, which gives a live to dead load ratio of 13.5. Composite materials 
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were used because lighter weight structure made it possible to use a smaller lift 

mechanism. 

2.7.3 Troutville Weigh Station 

This bridge, located in Troutville, Virginia, was constructed in 1999 and is a 3.05 

meters (10 feet) by 4.65 meters (15 feet) composite deck section (Scott and Wheeler 

2001). Standard EXTREN® structural shapes and plate of 4.65 m (15 ft) width were 

used in the construction of the bridge deck. (EXTREN® is a proprietary combination of 

fiberglass reinforcements and thermosetting polyester or vinyl ester resin systems. It is 

produced in more than 100 standard shapes and all shapes have a surface veil to 

protect against glass fibers penetrating the resin surface in service and to increase 

corrosion and UV resistance). The deck has as support steel I-girders and experiences 

traffic of over 13,000 fully loaded trucks per day. 

Some other features of the bridge include routine inspection capability installed 

into the system and flexible foundation for the purpose of future experimental bridge 

decks. A data acquisition monitoring system to collect and report real data has been 

installed by Virginia Tech. 

2.7.4 Laurel Run Road Bridge 

This bridge was constructed in Somerset County, Pennsylvania, and was open to 

traffic in October 1998. (Scott and Wheeler 2001) It is a short span composite deck with 

steel stringers, and has a dimension of 8.66 m (28 ft) by 10.04 m (33 ft). It consists of 

the SuperdeckTM (modular FRP composite deck) supported on a W14 x 68 galvanized 

steel I-girders at a spacing of 0.9 m (3 ft) centers and a substructure of steel-reinforced 

concrete. The modular deck design is one featuring trapezoids connected with 
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hexagon-shaped pins. Epoxy polymer concrete was overlayed as the wearing surface. 

FRP square tubes were used for the kerbs. The bridge has been designed for AASHTO 

HS25-44 live loading.  

2.7.5 Laurel Lick Bridge 

The construction of this short-span bridge was completed in May 1997 in Lewis 

County, West Virginia (Shekar et al. 2002, Hayes 1998). It spans 6.10 m (20 ft) and has 

a width of 4.88 m (16 ft). It consists of modular FRP composite deck supported by 

pultruded FRP piles and I-beams. Hollow glass fabric shapes were pultruded and 

combined to obtain an H-deck. This is composed of E-glass fibers in the form of triaxial 

stitched fabrics, continuous rovings and chopped strand mats.  

Sandstone foundation supported the piles for the bridge and was also filled with 

polymer concrete. The wide-flange pultruded I-beams were attached to the reinforced 

concrete cap pilings with steel clip plates. These I-beams were spaced at 0.76 m (2.5 ft) 

centers. The FRP deck modules were connected to these I-beams with 0.5-in. blind 

fasteners. Polyester Polymer concrete overlay of 1.0 cm (0.4 in.) thick was used as the 

wearing surface. The kerbs were made of FRP square tubes and a live loading based 

on AASHTO HS25-44 was the design standard.  

2.7.6 Tech 21 (Smith Road) Bridge 

This is Ohio’s first all-composite bridge. The Butler County Engineer's Office 

installed this structure built entirely of advanced composite materials in 1997. (Foster et 

al. 2000) Structural Polymer Matrix Composites (PMC) such as glass fibers in 

thermosetting resins were used in the construction of the bridge, providing high specific 

strength, specific stiffness, and corrosion resistance. This bridge (also known as the 
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‘smart bridge’) is also the nation’s first fully instrumented bridge. Health monitoring 

instrumentation was installed for the purpose of providing information on the 

performance under field conditions. Special sensors have been embedded and linked to 

special computers designed for continuous monitoring. The bridge has a span of 10.06 

m (33 ft), a width of 7.3 m (24 ft) and a depth of about 0.85 m (2.8 ft). It has a weight of 

less than 22,000 Ibs. It consists of a DuraSpanTM deck bonded compositely with three 

U-shaped FRP girders which serve as supports, and has a reinforced concrete 

substructure. The deck is a sandwich FRP construction consisting of pultruded tubes 

between two face sheets. The tubes run parallel with the traffic direction. The bridge 

was designed with the AASHTO HS25-44 standard for live loading (Scott and Wheeler 

2001). 

2.7.7 Miyun Bridge, Beijing 

Some of the first applications of fiber-reinforced plastics for complete bridge 

structures were in China. A number of pedestrian bridges have been built but the first all 

composite bridge deck was the Miyun Bridge completed in September 1982 near 

Beijing, which carries full highway traffic (Scott and Wheeler 2001, Khalifa et al. 1993). 

2.7.8 Ulenbergstrasse Bridge, Düsseldorf 

Ulenbergstrasse Bridge, Düsseldorf, Germany was the world’s first in the use of 

high tensile strength glass fiber prestressing tendons (Khalifa et al. 1993). The bridge 

cross section has been monitored since its completion in July 1986 with four fiber optic 

sensors. The results obtained show the effects of temperature variation on strain and 

also detect any cracking of the concrete structure. This type of monitoring program has 

thereby proved a cost effective way of introducing a new structural material without 
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lengthy proving trials. Any degradation in structural performance will be indicated by the 

sensor and the exact location of the defect will be known. Any remedial steps that must 

be taken will therefore be directed to solving problems as they arise. 

2.7.9 Salem Avenue Bridge, Dayton 

The design, construction and long-term observation of this bridge illustrate some 

difficulties encountered in the use of FRP in bridge construction (Scott and Wheeler 

2001). It was originally built in 1951 with steel and consisted of twin structures with a 

longitudinal joint and a four-foot raised concrete median down the centre. After many 

decades, it was observed that the bridge needed replacement; it had developed 

numerous potholes and cracks. Therefore, in 1999, ODOT began an experiment to 

rebuild the 679-ft bridge with light-weight, high-strength FRP panels as part of a project 

to test this space-age material for various bridge applications. The construction was 

done in 2000 and was designed based on AASHTO HS25-44 code for live loading. 

Unfortunately, though, this new material presented some new problems for 

construction crews and engineers. The bridge was constructed with four FRP composite 

deck systems each from a different manufacturer. These FRP panels for the span did 

not fit together smoothly and didn’t bond correctly to the bridge’s beams. Additionally, 

after a few months of the completion of the project, some complications with some of 

the panels were noticed leading to a closure of the north side of the bridge in 

September 2000. Composite deck cracking and blistering were observed. Sometime 

later, two of the panels were observed to have experienced delamination. 

This led to investigations which revealed that the delaminations were due to 

defects in manufacturing. It was also found that the haunch of the steel girders did not 
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have a uniform contact bearing area under the FRP decks. The joints between different 

deck systems were also observed to be open because of the variations in the 

stiffnesses. Thus, variable deflection could result in damage. This shows the need for 

more careful procedures in the design of connections and other details, as well as 

proper material selection. 

2.7.10 No-Name Creek Bridge, Kansas 

On November 8, 1996, the nation’s first all composite FRP bridge on a public 

road was installed over No-Name Creek, just three miles west of Russell, Kansas and 

this was done by Kansas Structural Composites, Inc. (KSCI) of Russell, Kansas 

(Davalos et al. 2001, Plunkett 1997). It is a short-span, self-supporting bridge of 23 ft in 

length and 27 ft in width and demonstrates the viability of the structural panel concept. It 

was built with the capability of supporting an AASHTO HS-25 load in both lanes. The 

bridge was constructed of three adjoining longitudinal sandwich panels with a depth of 

22.5 in. The sandwich structure composed of 20.5-in. thick core with a 0.75-in. lower 

face, and a 0.5-in. upper face. The core has a sinusoidal wave configuration in the 

plane extending vertically between the faces as seen in Fig. 2.1. Demonstrating the 

simplicity of the project, the whole installation process required just one and a half days. 

Part of the construction is shown in Fig. 2.6. 
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Further research continues on FRP. This includes concrete repair and 

reinforcement, bridge deck repair and new installation, composite-hybrid technology 

(the marriage of composites with concrete, wood and steel), marine piling and pier 

upgrade programs. 

Figure 2.6: Installation of No-Name Creek Bridge, Russell, Kansas. 
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CHAPTER 3 -   DERIVATION OF PROPERTIES FOR IN-PLANE 

BEHAVIOR 

3.1 Introduction 

Micro- and macro- mechanical analyses are two points of view that have long 

been used to examine composite materials. In the micro-mechanical approach, 

consideration is given to the basic constituents of the composite material – the fibers 

and matrix. The behavior of the material is therefore a function of the individual 

elements. Thus, a lamina (or ply) is viewed as heterogeneous. Macro-mechanics, on 

the other hand, considers the lamina as having averaged properties, and is useful in 

analyzing a stack of laminae – a laminate. The assumptions, approximations and 

equations used in these two analyses have been well documented in literature. In the 

next two sections (Sections 3.2 and 3.3) therefore, the equations shown are from 

previous work, such as those of Vinson and Sierakowski (1986). They are reproduced 

here to show their application to the present study. The information is needed to 

analyze the component materials of the structure under consideration in this work – 

FRP sinusoidal wave-core sandwich panel. First, individual laminae are studied using 

micro-mechanics. These plies include those of the faces and the core mat. Then, using 

macro-mechanics, the face laminates can be analyzed. 

After the lamina and laminate properties have been computed, an approach is 

next developed in this work (Section 3.4) to derive the properties for in-plane behavior 

of the core using finite element modeling.  
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3.2 Micromechanical Analysis 

To determine the properties of a lamina, the basic components of the composite 

– the fiber and matrix element – are considered. It is noteworthy at this point that the 

fibers and matrix are assumed to be homogeneous, isotropic and linearly elastic 

(Vinson and Sierakowski 1986). One of the most crucial factors which determine the 

properties of composites is the relative proportions of the matrix and reinforcing fibers. 

These relative proportions are indicated as volume or weight fractions. These 

parameters are defined thus (Agarwal and Broutman 1980): 
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where c f mw w w= + and c f mv v v= + , fV and mV represent the fiber and matrix volume 

fractions, fW and mW  refer to the fiber and matrix weight fractions, fv and mv symbolize 

the fiber and matrix volumes, fw and mw are the weights of the fiber and matrix. 

Apart from the volume and weight fractions, the properties of the constituent 

materials are also determining factors for the properties of the laminates. In the 

unidirectional composite, the assumptions that the fibers have uniform properties and 

diameter, and are parallel throughout the composite are made. Also assumed is that 

perfect bonding exists between fibers and matrix, and that these constituents both 

behave elastically. 

In the longitudinal direction of the composite (with the assumption stated above), 

the strains in the fiber fε , matrix mε  and composite cε  are all equal. Therefore, 
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f m cε = ε = ε   Equation 3.3a 

Also, the stresses in the fiber fσ  and the matrix mσ  are: 

f f fEσ = ε  Equation 3.3b 

m m mEσ = ε  Equation 3.3c 

where Ef and Em represent the modulus of elasticity of the fiber and matrix respectively. 

The average stress in the composite (for composites with parallel fibers) becomes, 

c f f m mV Vσ = σ + σ  Equation 3.4 

From Equation 3.4, the following formula for the elastic modulus of the composite 

is obtained: 

c f m
f m
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σ σ σ
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= +  Equation 3.5 

For a linear stress-strain curve, 

Ec = EfVf + EmVm Equation 3.6 

This above relationship is known as Rule of Mixtures, and shows that the 

contributions of the fibers and matrix to the average composite properties are 

proportional to their volume fractions. Each lamina in the two face laminates is treated 

as an orthotropic material, requiring twelve physical quantities. These quantities are E1, 

E2, E3, G12, G23, G31, v12, v13, v21, v23, v31 and v32. It has been proved that 

(Vinson and Sierakowski 1986): 

i
ij ji

j
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E

= , (i, j =1, 2, 3) Equation 3.7 

where E, G and v represent elastic modulus, shear modulus and Poisson’s ratio of the 

lamina.  
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By assuming that the composite is macroscopically transversely isotropic, (E, G 

or v)12 = (E, G or v)13 and (E, G or v)22= (E, G or v)23 so that the number of 

independent constants reduces to five. Each face laminate is composed of distinct 

layers of unidirectional laminae. The properties of the basic unidirectional composite are 

first computed, and then properties of the laminate are obtained. Fig. 3.1 below gives a 

description of the coordinate system. Axes 1 and 2 represent directions parallel and 

perpendicular to fibers respectively. They form the local coordinate system. Axes X and 

Y form the global coordinate system. 

Several models exist in computing these elastic constants such as Rule of 

Mixtures (ROM), Cylindrical Assemblage Model (CAM) and Periodic Microstructure 

Model (PMM) (Barbero 1998). From the Rule of Mixtures discussed above, the modulus 

of elasticity in the fiber direction can be expressed as (Whitney et. al. 1982): 

1 1 1f f m mE E V E V= +  

1 1 (1 )f f m fE V E V= + −  Equation 3.8 

For the transverse direction, it is assumed that the total displacement of the 

composite is the sum of the displacements of the fiber and the matrix components. 

Hence, unlike the case of the longitudinal (fiber) direction, the strain values for these 

components in the transverse direction are not necessarily equal. The elastic modulus 

can be written as shown in Equation 3.9: 
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 and, 

ε  = 2, for square packing of fibers 

    = 1, for hexagonal packing of fibers 

 

                 

 

 

         

       

 

 

The major Poisson’s ratio v12 is defined as the negative of the ratio of the strain 

in direction 2 to that in direction 1 when the stress is applied in direction 1. Minor 

Poisson’s ratio v21 is the negative of the ratio of the strain in direction 1 to that in 

direction 2 when the stress is applied in direction 2. The major Poisson’s ratio can be 

defined from the simple Rule of Mixtures (Whitney et. al. 1982): 

12 12 12 (1 )f f m fv v V v V= + −  Equation 3.10 

where, v12f and v12m represent major Poisson’s ratios for the fiber and matrix 

respectively. 

Figure 3.1: Principal Material Coordinate System 
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The minor Poisson’s ratio is computed from the interaction below: 

2
21 12

1
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=  Equation 3.11 

If the unidirectional composite is transversely isotropic, Poisson’s ratio v23 is 

further defined as the negative of the ratio of the strain in the 3 direction (vertical) to the 

strain in the 2 direction when the stress is applied in the 2 direction. This additional 

quantity is expressed by the following equation (Whitney et al. 1982): 
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where K2 = plane strain bulk modulus. For a continuous fiber reinforced unidirectional 

material, 
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where K2f and K2m = plane strain bulk moduli for fiber and matrix respectively. 

From the Rule of Mixtures, the in-plane shear modulus G12 is obtained as below: 
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 Equation 3.14 

where Gf and Gm are the in-plane shear moduli of the fiber and matrix respectively. 

The more accurate cylindrical assemblage model (CAM), which is used in this 

work, predicts the in-plane shear modulus as (Barbero 1998): 
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Finally, the interlaminar shear modulus G23 is predicted from the equation below: 
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where, 

23
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To form the laminates, several layers of thin laminae are stacked together with 

resin serving as the bonding agent. In Fig. 3.2, the lay-up of the face laminates for this 

study is seen. The lay-up includes the following four types of fiber layers: Chopped 

Strand Mat (ChopSM), Continuous Strand Mat (ContSM), Bidirectional Stitched Fabrics 

(SF) and unidirectional layers. The constituent materials were E-glass fibers and 

polyester resin. The materials were manufactured by Brunswick Technologies, 

Brunswick, Maine (Davalos et al. 2001). 

 

 

 

 

 

 

 

With the formulation discussed above, the elastic constants are derived for each 

layer of Fig. 3.2. The results are presented in Table 3.1. The table shows a comparison 

with the results obtained by Davalos et al. (2001). As can be observed from the table, 

there is very good comparison between both sets of results. Constants for the randomly 

Figure 3.2: Face laminate lay-up (Davalos et al. 2001) 

CM-3205 (00/900SF + ContSM) 

6 x (UM-1810 (00 roving + ContSM)) 

CM-3205 (00/900SF + ContSM) 

Bonding Layer (ChopSM) 
Interior 

Exterior Face 
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oriented core mat used for the core are also computed and shown in the table. More 

about the core will be discussed later. 
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Ply Name Orientation E1 (GPa) E2 (GPa) G12 (GPa) G23 (GPa) v12 
    Davalos Proposed Davalos Proposed Davalos Proposed Davalos Proposed Davalos Proposed 

Bond 
Layer Random 9.72 10.54 9.72 10.54 3.5 3.798 2.12 2.11 0.394 0.388 

CM3205 0 or 90 27.72 28.14 8 9.36 3.08 3.076 2.88 2.8 0.295 0.285 
CM3205 Random 11.79 16.4 11.79 16.4 4.21 5.86 2.36 2.33 0.402 0.4 
UM1810 0 30.06 30.48 8.55 10 3.3 3.295 3.08 2.97 0.293 0.283 
UM1810 Random 15.93 17.68 15.93 17.68 5.65 6.31 2.96 2.87 0.409 0.4 
Core Mat Random 11.79 12.65 11.79 12.65 4.21 4.54 2.97 2.33 0.402 0.393 

 

 

Table 3.1: Individual layer stiffness properties’ comparison with Davalos et al. (2001) 
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3.3 Macromechanical Analysis 

Having derived the properties of each lamina, the next step is to compute 

equivalent elastic properties of the laminate. To achieve this, macro-mechanical 

analysis is employed. To obtain the equivalent elastic constants, stiffness properties of 

the composite material have to be derived first. Since each lamina has different stacking 

ply orientation θ , the laminae constants have to be transformed to the global coordinate 

system. Before that is done, a stiffness matrix [Q] is needed. This matrix relates the 

stress and strain matrices in the form (Vinson and Sierakowski 1986): 

{ } { }[Q]σ = ε  Equation 3.17 

[Q], which is in the local coordinate system of the lamina is then transformed to the 

global coordinate system using the transformation below: 

1[ ] [ ] [ ][ ]Q T Q T−=  Equation 3.18 

where [T] is the transformation matrix between local and global coordinate systems. 

A laminate with a thickness of h and mid-plane being z = 0 is considered. hk is 

the vectorial distance to the upper face of the kth lamina. This nomenclature is 

described in Fig. 3.3 below. 
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Using the transformed stiffness matrix [Q] of each lamina and the nomenclature 

as described in Fig. 3.3, the stiffness matrix of the laminate is then computed. The 

stiffness matrix of the laminate is expressed in this form: 

Laminate stiffness =    
[ ] [ ]
[ ] [ ]
A B
B D

 Equation 3.19 

where the [A] matrix is the extensional stiffness matrix, [B] matrix is known as the 

bending-stretching coupling matrix and [D] is the flexural stiffness matrix. The terms of 

these matrices can be calculated from the equations below: 

n

ij ij k k k 1
k 1

A (Q ) [h h ]−
=

= −∑ , Equation 3.20 

Figure 3.3: Laminate lay-up nomenclature 
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n
2 2

ij ij k k k 1
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1B (Q ) [h h ]
2 −

=

= −∑ , Equation 3.21 

and 
n

3 3
ij ij k k k 1

k 1

1D (Q ) [h h ]
3 −

=

= −∑  Equation 3.22 

For a balanced, symmetric laminate such as the one in this work, the effective 

elastic constants can be expressed in terms of the laminate thickness h, and terms in 

the extensional stiffness matrix, Aij. These constants represent the properties of the 

equivalent orthotropic plate. The moduli of elasticity are given by the following equations 

(Whitney et. al. 1982): 

2
11 22 12 22( ) /xE A A A hA= −  = equivalent longitudinal modulus of elasticity Equation 3.23 

and 2
11 22 12 11( ) /yE A A A hA= −  = equivalent lateral modulus of elasticity Equation 3.24 

The Poisson’s ratios have the formulae below: 

12 22/xyv A A=  = major Poisson’s ratio Equation 3.25 

and 12 11/yxv A A=  = minor Poisson’s ratio Equation 3.26 

Finally, the shear modulus is given by Equation 3.27: 

66 /xyG A h=  Equation 3.27 

These constants are computed for the entire laminate lay-up shown in Fig. 3.2 

and the results are given in Table 3.2 below. The table also compares the results 

proposed here with those obtained by Davalos et al. (2001). A very good comparison 

between both sets of results is noticed, differing by not more than 2%. 
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3.4 Derivation of Equivalent Properties of Core 

3.4.1 Finite Element Modeling 

In this section, an approach for determining the properties for in-plane behavior 

of the sinusoidal wave core is developed. The properties of the core material (core mat) 

have already been computed using the micro-mechanics analysis in the previous 

section (See Table 3.1). Determining the equivalent properties of the complicated 

sinusoidal wave core, which is equivalent to a solid core, is done with the aid of finite 

element modeling by using the core mat properties as inputs. All finite element models 

created in this work was done using the program ANSYS 9.0. This is powerful computer 

software for engineering modeling and analysis. 

Because of the complexity in modeling a sinusoidal wave core configuration, the 

models were generated with the aid of the computer software, Microsoft Visual C++ 6.0. 

A program which was originally developed by Kalny (2003) was further modified here for 

the purpose of this study (Appendix A). This program is designed to generate macro 

files for the nodes and elements of the core, by reading an input file. Additionally, 

because writing an input file for a large core can be quite cumbersome, a program in 

MATLAB 6.5 was written to generate the entire input file which would be recognized by 

Property Proposed Davalos (2001) 
Ex (GPa) 20.15 19.62 
Ey (GPa) 12.87 12.76 
Gxy (GPa) 3.764 3.76 

vxy 0.295 0.302 

Table 3.2: Elastic equivalent properties of face laminates compared with Davalos et al. 
(2001) results 
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the C++ software (Appendix B). This also reduces the probability of errors in the file, 

which can be a great source of inaccuracy in final results. 

First of all, what is known as a Representative Volume Element (RVE) is defined. 

This is the basic segment or cell unit of the whole structure. The honeycomb panel used 

in this research was manufactured by Kansas Structural Composites, Inc. (KSCI, 

Russell, Kansas), and has the following dimensions for the RVE: h = 1 in., l = 4 in. and 

t1 = t2 = 0.0898 in. In studying the in-plane behavior of the core, the top and bottom 

faces of the panel are not included. However, they can simply be added to the 

equivalent core in actual application. Fig. 3.4 below describes the RVE. The wave 

function used to define the core configuration is: 

21 cos xy h
l
π⎛ ⎞= −⎜ ⎟

⎝ ⎠
 Equation 3.28 

 

 

Figure 3.4a: Representative Volume Element (RVE) for this study (Davalos 2001). 
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The depth of the panel used as the basis of this work is 5 inches. Since the two 

faces have a total depth of 0.43 inches (as discussed in the previous sections), the core 

itself has a thickness of 4.14 inches  

3.4.2 Core Properties 

The core properties verified in this study are elastic and shear moduli. They are 

discussed in the following sections. The core is treated as an orthotropic material. The 

equivalent properties of the structure are calculated based on FE modeling using 4-

Figure 3.4b: ANSYS model of RVE 
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noded structural elastic shell elements. These elements have six degrees of freedom 

per node.  

In the following sections, attention is given to obtaining the equivalent Young’s 

modulus in the three perpendicular directions, Ex, Ey and Ez. 

3.4.2.1 Equivalent Elastic Modulus in the Vertical Direction, Ez 

To calculate the equivalent elastic modulus Ez of the core, a normal uniform 

pressure is applied on the RVE in the vertical direction. To accomplish this, 1-inch thick 

shell elements are placed on the top and bottom of the core. The top face serves as a 

medium for load application while the bottom provides the needed support. These 

elements are made very rigid so that there is no relative deflection within them, and 

hence, the resulting values of displacements represent core values only. A uniform 

pressure of 625 psi is applied to the top face, while all bottom nodes are constrained for 

translation in the three directions, ux, uy and uz. To prevent side-sway of the RVE 

model, the nodes on the top face are constrained for lateral movement. In this way, the 

structure can be analyzed as a simplified elastic spring model, once the displacement of 

the rigid face, zδ , is obtained.  

For linear elastic behavior, displacement, 

z
z

z

H
E
σδ =  Equation 3.29 

where zσ  = applied pressure, H = depth of RVE (that is, length of the element in the 

vertical direction), and Ez = the modulus of elasticity in the vertical direction. The value 

for Ez is thus obtained from the equation above. 
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3.4.2.2 Equivalent Elastic Modulus in the Longitudinal Direction, Ex 

The same principle is applied in the computation of Ex. Rigid shell elements are 

placed at the longitudinal ends of the RVE, serving as supports and application area for 

the pressure. A uniform pressure of 625 psi is again applied to one of the end faces 

while the nodes of the other end face are constrained for translation in the three 

directions, ux, uy and uz. Sway is prevented by constraining the nodes of the two faces 

for lateral movement.   

Thus, in the same vein, 

Displacement, x
x

x

L
E
σδ =  Equation 3.30 

where xσ  = applied pressure, L = length of RVE (that is, length of the element in the 

longitudinal direction), and Ex = the modulus of elasticity in the longitudinal direction 

3.4.2.3 Equivalent Elastic Modulus in the Lateral Direction, Ey 

Finally, to compute the modulus of elasticity in the width direction, the same 

operation is performed – placing rigid shell elements at the two ends of the lateral 

direction and applying a uniform pressure of 625 psi. The same constraints are applied 

as in the previous two cases. 

Displacement, y
y

y

W
E
σ

δ =   Equation 3.31 

where yσ  = applied pressure, W = width of RVE (that is, length of the element in the 

lateral direction), and Ey = the modulus of elasticity in the lateral direction 

3.4.2.4 Equivalent Shear Moduli (Gxy, Gyz and Gxz) 

The finite element models created for deriving the elastic moduli are also used in 

evaluating the shear properties. These shear properties of the core are derived based 
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on beam theory. When a beam deflects, it experiences two modes of deformation. The 

theory shows that the total deflection of a beam is the sum of the contributions from 

bending and shear. The bending mode results from the curve due to bending moment 

distribution. The shear mode is due to shear deformation caused by shear forces at 

every cross-section of the beam. Therefore: 

total bending shearδ = δ + δ  Equation 3.32 

where, bendingδ = deflection contribution from bending and, shearδ = deflection contribution 

from shear. For a cantilever beam, the deflection due to bending δbending , and that due to 

shear δshear , as a result of a concentrated load at the free end can be defined as, 

3

3
=δbending

PL
EI

, Equation 3.33a 

=δshear
s

PL
GA

 Equation 3.33b 

where P is the value of the concentrated load, L is the span of the beam, E represents 

the elastic modulus in the span direction, I is the moment of inertia, G is the shear 

modulus and As symbolizes the shear area. 

To obtain the shear moduli, the model is analyzed as a cantilever beam. The 

moduli of elasticity used are those calculated in Sections 3.4.2.1 to 3.4.2.3. 

3.4.2.5 Shear Modulus, Gxy and Gxz 

To obtain the equivalent shear modulus Gxy, the same kind of model employed 

in calculating elastic modulus in the longitudinal (x) direction is used – RVE with rigid 

shell elements placed at the longitudinal ends. One end face is constrained for both 

translation and rotation in all directions to simulate fixed end condition. On the central 
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node of the other end face, a concentrated force of 1000 Ib is applied in the transverse 

(y) direction. After the finite element analysis, the uniform transverse displacement totalδ  

is obtained. The bending contribution to the deflection bendingδ  is calculated based on Ex 

and the other cross-sectional parameters. The shear modulus Gxy is thus computed 

from Equations 3.32 and 3.33. 

Fig. 3.5 below describes the model, showing the coordinate system, load and 

constraints. 
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Figure 3.5a: Model for deriving Gxy Figure 3.5b: Coordinate system 

Figure 3.5c: ANSYS model for deriving Gxy 
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The same model is used to compute the shear modulus Gxz. The same 

concentrated force of 1000 Ib, boundary conditions and analysis approach are also 

used. However because the interested is in Gxz, the concentrated load is now applied 

in the vertical (z) direction. This can be visualized from Fig. 3.6. 

 

 

 

 

 

 

 

Figure 3.6b: Coordinate system Figure 3.6a: Model for deriving Gxz 

Figure 3.6c: ANSYS model for deriving Gxz 
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3.4.2.6 Shear Modulus, Gyz and Gyx 

Equivalent shear modulus Gyz is derived using the same approach. However, 

the model employed here is the same one used to derive elastic modulus in the lateral 

(y) direction. This time the rigid shell elements are placed at the two lateral ends of the 

model. One end face has fixed end conditions while on the central node of the other end 

face, the 1000 Ib concentrated force is applied in the vertical (z) direction. The uniform 

vertical displacement totalδ  is obtained. The contribution of bending to the deflection 

bendingδ is calculated based on Ey and the other cross-sectional parameters. The shear 

modulus Gyz is then obtained from Equations 3.32 and 3.33. In Fig. 3.7, an illustration of 

this model can be seen. 



 53

 

 

 

 

 

 

 

 

 

Figure 3.7b: Coordinate system Figure 3.7a: Model for deriving Gyz 

Figure 3.7c: ANSYS model for deriving Gyz 
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Using the same model, Gyx is also computed. The loading, boundary conditions 

and analysis approach remain the same. The only difference is that the 1000 Ib force is 

now applied in the longitudinal (x) direction. Observe this in Fig. 3.8. 

 

 

 

 

 

 

 

 

Figure 3.8a: Model for deriving Gyx Figure 3.8b: Coordinate system 

Figure 3.8c: ANSYS model for deriving Gyx 
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3.4.2.7 Shear Modulus, Gzx and Gzy 

The model used here for the calculation of equivalent shear modulus Gzx is that 

used to derive elastic modulus in the vertical (z) direction. The rigid shell elements are 

placed at the two vertical ends of the model. One end face has fixed end conditions on 

all its nodes. On the central node of the other end face, 1000 Ib concentrated force is 

applied in the longitudinal (x) direction. The uniform vertical displacement totalδ  is 

obtained. The contribution of bending to the deflection bendingδ is calculated based on Ez 

and the other cross-sectional parameters. The shear modulus Gzx is then obtained from 

Equations 3.32 and 3.33. An illustration of this model is found in Fig. 3.9. 
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Figure 3.9a: Model for deriving Gzx Figure 3.9b: Coordinate system 

Figure 3.9c: ANSYS model for deriving Gzx 
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Gzy is calculated using the same model, boundary conditions and analysis 

approach. The 1000 Ib concentrated load is also applied in the same position, but in 

lateral (y) direction. Fig. 3.10 below shows this. A summary of the results obtained from 

the analysis is presented in Table 3.3. 
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Figure 3.10b: Coordinate system Figure 3.10a: Model for deriving Gzy 

Figure 3.10c: ANSYS model for deriving Gzy 
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Ex 82350.62 
Ey 6440.79 
Ez 195192.37 
Gxy 3210.94 
Gyx 23.15 
Gxz 38353.45 
Gzx 34423.54 

Gyz 16006.13 
Gzy 20771.66 

 
As seen from the results, Gxy is much greater than Gyx. This is because there is 

more shear stiffness in the core when spanning in the longitudinal direction with an 

applied force in the lateral direction than there is in the reverse direction. The deflection 

is less in the former case. This outcome is due to the sinusoidal geometry of the 

honeycomb core. 

3.5 Comparison of Results 

The results above are compared with results obtained in experiments and 

analytical approach by Davalos et al. (2001) and Qiao et al. (2003). In Table 3.4 below, 

the comparison with the work of Davalos et al. is presented. Then in Table 3.5, the 

comparison with Qiao et al. can be seen. 

From Table 3.4, it can be observed that the results of Davalos et al. compare 

generally well with those in this present work. The difference between the shear 

modulus values Gyz is about 3%, while the elastic moduli, Ex and Ez compare within 

6%. The values of the shear modulus, Gxz has a difference of about 20%. On the other 

hand, there are very large differences between the values for Ey and Gxy. However, 

Table 3.3: Equivalent elastic properties (psi) derived from finite element modeling 
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these large differences are not of serious concern since Ey and Gxy have little 

importance in application. 

Property Proposed (psi) Davalos et al. 2001 (psi) 

Ex 82350.62 76779 
Ey 6440.79 142.96 
Ez 195192.37 182970 
Gxy 3210.94 102.26 
Gyx 23.15   
Gxz 38353.45 45825 
Gzx 34423.54   

Gyz 16006.13 16497 
Gzy 20771.66   

  

Qiao et al. also performed experiments on some specimens and came up with 

results for the elastic constants in the Table 3.5. He also used analytical approach to 

derive the constants. As we see in the table, his results compare closely with those of 

the present work. Qiao’s experimental results for Ex, Ey and Ez have differences of lees 

than 13%, 6% and 1% respectively with the results obtained in this research. From his 

analytical results, the difference in Ex is about 13%, 6% for Ey, 2% for Ez and 6% for 

Gxy. So even though the shear modulus Gxy in this work differs greatly from that of 

Davalos et al., it has a very good comparison with the work of Qiao et al. 

From Tables 3.5a and 3.5b, the computed values of Ex and Ey can be observed 

to differ. This is because in comparing the results with the experiments of Qiao et al. 

(2003), two different models were used in this work. The experiments performed by 

Qiao et al. were based on a model which had the full thickness t1 of the two external 

Table 3.4: Comparison of results with work of Davalos et al. (2001) 
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flats. However in his analytical approach, he used a model whose external flats each 

had half the full thickness (t1/2). Therefore, for consistency in the comparison, two 

different finite element models were used. In comparing results with Qiao’s experiment, 

the finite element model had external flats with full thickness. This thickness was 

reduced by half in the second model to compare with Qiao’s analytical method. This 

accounts for the differences in Ex and Ey in the tables. 

Property Proposed (psi) Qiao Analysis (psi) 

Ex 82350.62 76950.00 
Ey 6440.79 6515.10 
Gxy 3210.94 3437.10 

 

Property Proposed (psi) Qiao Experiment (psi) 

Ex 123500.00 105507.00 
Ey 6528.38 6121.80 
Ez 235232.93 234270.00 

 

3.6 Discussion of the Results 

It was noted earlier that the approach used in this chapter studies the in-plane 

behavior of the structure. In this section, an examination is performed to investigate 

whether these properties developed for in-plane behavior could be applied to bending 

behavior. This investigation is performed for two cases – a beam and a panel. 

Table 3.5a: Comparison with analytical results of Qiao et al. (2003) 

Table 3.5b: Comparison with experimental results of Qiao et al. (2003) 
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3.6.1 Case 1: Beam Model 

To test these equivalent elastic properties, an FRP honeycomb sandwich beam 

with the actual sinusoidal core configuration is analyzed using finite element modeling. 

The beam is simply supported over a span of 8 ft. The beam cross-section is 8 in. x 5 in. 

The simple support condition is modeled by constraining the nodes on the left end of the 

beam from translation in the vertical and longitudinal (uz and ux) directions while those 

on the right end are prevented from vertical (uz) displacement. To maintain stability of 

the structure, the nodes at these two ends are also constrained for translation in the 

transverse direction (uy). A pressure load of 62.5 psi is applied to mid-span elements 

within an area of 4 in. x 4 in. The ANSYS actual configuration beam model is shown in 

Fig. 3.11. 

An equivalent beam having the same dimensions, loading and support conditions 

as the actual beam is also modeled and analyzed. The equivalent beam is modeled 

using structural-layered shell elements, so that a three layered structure can be 

modeled. The three layers represent the faces and the equivalent core. The properties 

developed in the previous section and presented in Table 3.3 are used for the 

equivalent core layer, while those verified and shown in Table 3.2 are used for the face 

laminates. Fig. 3.12 shows the ANSYS equivalent model. 

After the finite element analysis, the maximum deflections for both models which 

occur at mid-span are noted. The actual beam recorded a deflection of 0.2272 inches, 

while the equivalent had a deflection of 0.1878 inches. A comparison shows a 

difference of about 17%. This difference is relatively significant. 

 



 63

 

 

 

Figure 3.11a: ANSYS model of actual FRP sinusoidal core beam 

Figure 3.11b: Deflection contour of actual FRP sinusoidal core beam 
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Figure 3.12a: ANSYS model of 3-layered equivalent FRP beam 

Figure 3.12b: Deflection contour of 3-layered equivalent FRP beam 
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3.6.2 Case 2: Panel Model  

In the second case of this examination, a full-size FRP honeycomb panel is also 

analyzed by finite element method. The model is 15 feet x 7.75 feet x 5 inches and 

simply supported over the span. A load equivalent to 10 kips is applied at the center of 

the deck. This load is distributed over elements within an area of 12 inches x 9 inches. 

Since the model is symmetric about its mid-span, half of the bridge is modeled, 

and the loading and boundary conditions are simulated accordingly. The left support is 

constrained for displacement in the vertical and lateral (uz and uy) directions while 

rotation about the lateral axis and displacement in longitudinal direction (Roty and ux) 

are constrained on the right support. Half the total load is used in this model, for 

symmetry. In Fig. 3.13, the full scale ANSYS model and vertical deflection contour can 

be seen. 

Just as was done in Case 1, an equivalent panel is also modeled and analyzed. 

The panel has the same dimensions, loading and support conditions as that of the 

actual configuration model. Structural-layered elastic shell elements are employed to 

simulate a three-layered equivalent panel structure with two faces and a core. Tables 

3.2 and 3.3 were used to input the properties of the panel. Fig. 3.14 illustrates the model 

by ANSYS as well as the vertical deflection contour. 

The results of deflection are recorded for two cases. First, at quarter points along 

the longitudinal centerline. Then, at quarter points along the lateral direction on the right 

end of the symmetric model (midspan of full model). These two sets of results are 

shown in Table 3.6. A comparison shows an approximately consistent difference of 
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about 19%, which is significant and about the same as that for the beam model in Case 

1. 

 

 

Figure 3.13a: ANSYS model of actual FRP sinusoidal core panel 

Figure 3.13b: Deflection contour of actual FRP sinusoidal core panel 
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Figure 3.14a: ANSYS model of 3-layered equivalent FRP panel 

Figure 3.14b: Deflection contour of 3-layered equivalent FRP panel 



 68

x Actual Configuration Equivalent (Equation) % diff. 
0 0 0   
45 0.8073 0.6526 19.1599
90 1.2016 0.9719 19.1145

135 0.8073 0.6526 19.1599
180 0 0   

 

y Actual Configuration Equivalent (Equation) % diff. 
0 1.2191 0.9586 21.3666
23 1.1798 0.9498 19.4974

46.5 1.2016 0.9719 19.1145
69 1.1801 0.9498 19.5178
93 1.2196 0.9586 21.3988

 

The fact that the results obtained in the previous analysis do not compare too 

well might raise some concerns about the validity of the approach. However, a closer 

examination of the method used in deriving the equivalent panel properties reveals that 

attention was not given to bending behavior. In other words, the moduli of elasticity in 

the three orthogonal directions are obtained based on the equivalency of axial stiffness. 

For this honeycomb sandwich configuration, however, there is obviously a difference in 

behavior in the equivalence of axial and bending stiffnesses. We will discuss bending 

behavior further when we analyze the case of a single-layered equivalent model 

(Chapters 5 and 6). 

From the foregoing, we can conclude that the results are useful when we deal 

with situations relating to in-plane behavior or axial effects. Separate properties will be 

derived for bending (out-of-plane) behavior.  

Table 3.6a: Comparison of deflection results (in.).  Points in the longitudinal direction 
along the central line (in.) 

Table 3.6b: Comparison of deflection results (in.). Points in the lateral direction along the 
midspan (in.) 
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CHAPTER 4 -  PARAMETRIC STUDIES FOR IN-PLANE 

BEHAVIOR 

4.1 Introduction 

In the previous chapter (Chapter 3), an approach was developed and verified to 

derive the properties for in-plane behavior of the sinusoidal wave core. A core geometry 

with specific properties was considered. In this chapter, we are interested in developing 

equations relating the core properties for in-plane behavior with the core parameters. 

This becomes very useful when we have a core section whose parametric values differ 

from those considered in the previous chapter. Therefore, in this section attention is 

given to the relationship between core parameters and stiffness properties and 

equations relating them are derived. With these simplified equations, the equivalent 

stiffness properties from specific core parametric values can be obtained. This 

parametric study is performed using as the basis the same RVE described in the 

preceding sections, and its basic parameters. Just as was done in Chapter 3, the top 

and bottom faces of the panel are not included in this parametric study but can be 

conveniently added to the equivalent core in actual application. 

4.2 Determining Equivalent Properties 

Due to the complex nature of the core configuration, analysis and design can 

become complicated. In real design situations, it is favorable to deal with complex 

shapes using their equivalence. Therefore, a study by Davalos et al. (2001) focused on 

developing equivalent elastic properties for this complex core structure. He performed 

design modeling and experimental characterization, and obtained an approximate 

analytical solution through a homogenization process. To verify the results, experiments 
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were carried out and finite element analysis was performed. To obtain the equivalent 

properties of the core, an energy method combined with mechanics of materials 

approach was used. 

FRP panels used in this study were developed by Kansas Structural Composites 

Inc. The production of the panel involves sequentially bonding a flat sheet to a 

corrugated sheet to form the flat and waved FRP cells. It is then assembled and co-

cured with the upper and lower face laminates. The Representative Volume Element 

(RVE) of the honeycomb core manufactured by KSCI had a 2-in. flute-width and 4-in. 

half-sine wavelength. The constituent materials were E-glass fibers and polyester resin. 

The depth of the panel is 5 in. The sinusoidal wave-core is made of mats arranged in 

the form of flats and flutes each having a thickness of 0.0898 in., and elastic modulus of 

1,710 ksi. In this work, we refer to all these parametric values as the basic parameters.   

Verification of the results obtained was done by carrying out experimental testing 

and finite element modeling of FRP honeycomb beams. These were then correlated 

with analytical solutions based on first-order shear deformation theory. It was observed 

that the analytical solution correlated well with both the finite element modeling and 

experimental results. 

What Davalos et al. obtained in his work were equivalent properties for a core 

with fixed dimensions. An optimization research may however reveal a more efficient 

section. Therefore, in this present work, attention is given to the relationship between 

core parameters and elastic modulus, and equations relating them are derived. With 

these simplified equations, the equivalent orthotropic stiffness from specific core 

dimensions and properties can be obtained. This parametric study is performed using 
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the RVE, which is the basic segment or cell unit of the whole structure. The RVE is 

reproduced in Fig. 4.1. 

The equivalent orthotropic modulus of elasticity E  of the RVE is a function of 

panel depth H, flute width W, flute half-wavelength L, flat/flute thickness t and elastic 

properties of the flat/flute materials. (The flat and flute laminae are composed of 

randomly oriented fibers. Hence the moduli of elasticity of these materials are assumed 

equal in all directions in the plane). 

 

 

Figure 4.1: Representative Volume Element of Core 
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4.3 Finite Element Modeling 

Determining the equivalent properties of the sinusoidal wave core is done with 

the aid of finite element modeling. The finite element models created was done using 

the program ANSYS 9.0 which is powerful computer software for engineering modeling 

and analysis. 

4.4 Parameters Affecting the Young’s Modulus in the Longitudinal Direction 

First, an effort is made to determine to what degree each parameter influences 

the Modulus of Elasticity. Each parameter is varied within a reasonable range of 

dimensions while keeping others constant, each time computing the elastic modulus. 

The elastic modulus is obtained using the following procedure. First, a uniformly 

distributed load is applied to the core in the longitudinal direction. To ensure uniform 

displacement, rigid elements are used at the two ends for load application and support. 

Boundary conditions are simple supports (like the pin and roller supports of a simple 

beam). This is done by constraining the nodes at one end for translation in the three 

directions, ux, uy and uz while the nodes at the other end are constrained for lateral 

movement only. The longitudinal displacement is obtained, and Ex is calculated using 

the constitutive stress-strain relationship below: 

x
x

LE
L

σ
=
Δ

 Equation 4.1 

It is pertinent to note that inherent in this approach is the assumption that the 

behavior is linearly elastic. 

Plots of Ex against flute width, half wavelength and panel depth are represented 

in Fig. 4.2. The results indicate that the flute width has a more significant effect on the 

equivalent elastic constant. It is varied within the range of 0.5 inches to 5 inches. While 
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the flute width is varied, all other parameters are kept constant at their basic parametric 

values. Regression analyses of the results show that the relationship between the flute 

width W  and the elastic modulus xE (with other parameters kept constant) can be 

expressed as follows: 

n
xE aW=  Equation 4.2 

where a 1.6609E 05= + , and n 1.0083= . 

Fig. 4.3 shows that the proposed equivalent formula in Equation 4.2 provides a 

very good fit of the finite element analysis performed on the actual configuration model. 

The difference between both data sets as shown in the figure is about 0.19%. 

 

 

Figure 4.2: Variation of Ex with panel depth, half-wavelength and flute-width 
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The flute half-wavelength L is varied within the range of 1inch to 10 inches while 

the other parameters are kept constant at their basic parametric values, and the results 

can be visualized from the plot in Fig. 4.4. As the half wave-length increases, there is 

gradual reduction in the elastic constant, and this relationship can be expressed thus: 

m
xE dL=  Equation 4.3 

where 0.8881 05d E= +  and 0.0523m = − . 

Figure 4.3: Comparison of equivalent model with actual 
configuration model for flute-width W 

0

0.08 

0.16 

0.24 

0.32 

0.4 

0 1 2 3 4 5 6
Flute Width, W (in.)

FEM of Equivalent
FEM of Actual Config.

E
la

st
ic

 M
od

ul
us

, E
x (

*1
06  p

si
) 



 75

 

It can be noticed from Fig. 4.5 that the proposed equivalent equation reflects a 

very good fit of the finite element analysis performed on the actual configuration model. 

The difference between both results is only about 0.25%. 

Figure 4.4: Variation of Ex with panel depth H and half-wavelength L 
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In contrast to the half-wavelength, there is a gradual rise in the elastic modulus 

as the panel depth H  is increased from 1 inch to 10 inches. Again, other parameters 

are held constant while H is varied. This variation can also be seen from Fig. 4.4, and 

can be expressed by the following equation: 

r
xE fH=  Equation 4.4 

where 0.7585 05f E= + and 0.0553r =  

Once again, a good fit by the proposed equivalent equation of the actual 

configuration model results from the finite element analysis can be seen. This can be 

noticed from Fig. 4.6. The difference between the two curves is approximately 0.26%. 

Figure 4.5: Comparison of equivalent model with actual configuration 
model for half-wavelength L 
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There is a more linear relationship between the flat/flute thickness t  and the 

elastic constant as it is varied from 0.01 to 0.2 in. The results for this variation are 

presented in the plot on Fig. 4.7, and the relationship (with all other parameters kept 

constant at their basic values) can be expressed by the following equation: 

xE u vt= +  Equation 4.5 

where 3.6898 02u E= − +  and 9.2268 05v E= + . 

Figure 4.6: Comparison of equivalent model with actual configuration 
model for panel depth H 
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Fig. 4.7 also shows how well the proposed equivalent equation (Equation 4.5) fits 

the results of the actual configuration model obtained from the finite element analysis. A 

very good fit is noticed, the difference between both curves being only about 0.11%. 

 

 
The relationship between the modulus of elasticity of the flat/flute 11E  and the 

equivalent Young’s Modulus xE  is linear and can be visualized in the graph in Fig. 4.8. 

11E  was varied between 500 ksi and 10,000 ksi.  This variation can be expressed by the 

following equation: 

x 11E z wE= +  Equation 4.6 

where, z 3.1381E 03= −  and w 4.6309E 02= − . 

From Fig. 4.8, it can be observed that the proposed equivalent equation 

(Equation 4.6) provides a very good curve fit of the actual configuration model results 

Figure 4.7: Variation of Ex with flute/flat thickness t 
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obtained from the finite element analysis. The difference between the two plots is only 

about 0.3%. 

 

 
Equations 4.2 to 4.6 could be used to compute the elastic modulus in the 

longitudinal direction of the FRP sinusoidal wave core manufactured by KSCI when only 

one of its parameters is changed from the original basic value. For example, if for some 

reason the core mat is changed to a different material, but the flute-width, half-

wavelength, core height and core mat thickness remain unchanged, Equation 4.6 could 

be used to calculate Ex. However, it must be kept in mind that Ex obtained is true only 

for in-plane (axial) behavior such as when analyzing a column. It must also be noted 

that this is limited to the linear elastic range. 

Figure 4.8: Variation of Ex with material elastic modulus E11 
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4.4.1 Modification Factors 

The formulations in the previous section are valid only for a single variable. What 

if more than one of the parameters is altered? Therefore a more general relationship 

between the elastic modulus and the other aforementioned parameters is sought. 

Having understood the link between the various parameters, a more general equation 

for the elastic modulus Ex is now derived. In deriving this formula, a systematic 

approach that assumes that the parameters are independent variables of Ex is used. 

This leads us to the concept of modification factors of the equivalent elastic constant for 

a variation in core parameters. This concept will be better understood as we next 

consider the modification factor by each parameter. As discussed previously, one of the 

most important factors influencing the elastic constant is the flute width. The relationship 

can be seen in Equation 4.2. 

4.4.1.1 Half-wavelength Modification Factor, K1  

As was discussed in the previous section, the elastic constant xE  decreases as 

half-wavelength L  increases, and this relation is found in Equation 4.3. A plot of the 

modification factor for half-wavelength, 1 x x(L 4)K ( E / E )==  against the ratio 1 4R ( L / L )=  

shows a similar behavior. 4L  represents the basic half-wavelength of 4 in. and x(L 4)E =  is 

the elastic modulus of the panel when the half-wavelength is 4 in. This relationship can 

be seen in the graph in Fig. 4.9. Analyzing the results yields an equation for the 

modification factor 1K  of the form: 

m
1 1K R= α  Equation 4.7 

where, 1.0029α = ,m 5.2332E 02= − − , 1R 0.25L=  and L is in inches. 
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It can be observed from Fig. 4.9 that the proposed equivalent equation (Equation 

4.7) provides a very good curve fit of the actual configuration model results obtained 

from the finite element analysis. The difference between both curves is approximately 

0.25%. 

 

 
4.4.1.2 Panel Depth Modification Factor, K2 

Fig. 4.4 showed an increased in the modulus of elasticity with a rise in the panel 

depthH. A relationship was developed to define this relationship (Equation 4.4). The 

depth ratio 2 4.57R ( H / H )=  is now varied for a range of depth between 1 inch and 30 

inches, where 4.57H  is the basic panel depth of 4.57 inches. When the ratio x x(H 4.57)E / E =  

is plotted against 2R , the graph in Fig. 4.10 results. The ratio x x(H 4.57)E / E =  is the panel 

Figure 4.9: Variation of modification factor K1 with half-wavelength ratio R1 
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depth modification factor 2K , and x(H 4.57)E =  represents the elastic modulus at a depth of 

4.57 in. The plot in Fig. 4.10 can be represented by the following equation: 

p
2 2K (R )= β  Equation 4.8 

where, 1.0062β = , p 4.7176E 02= − , 2R H / 4.57=  and H is in inches. 

 

 
Again, the “FEM of Equivalent” plot fits very well with the “FEM of Actual Config.” 

from the analysis (Fig. 4.10). A difference of about 0.35% between both curves in the 

figure is recorded. 

4.4.1.3 Flat/Flute Thickness Modification Factor, K3 

Next, attention is given to the effect the flute/flute thickness t  has on the elastic 

modulus. A linear relationship of this parameter with the elastic constant was observed 

in the previous section, and its equation was derived (Equation 4.5). This can also be 

Figure 4.10: Variation of modification factor K2 with panel depth ratio R2 
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visualized in Fig. 4.7. To obtain the modification factor for the flat/flute 3K , we follow the 

same procedure as previously described for the other parameters. The thickness 

ratio 3 0.0898R ( t / t )= is computed for a range of t  between 0.01 inch and 0.2 inch, where 

0.0898t  is the basic flat flute thickness of 0.0898 inch. The modification factor 

3 x x(t 0.0898K ( E / E )== is plotted against 3R  and the resulting graph is plotted in Fig. 4.11. 

The expression for the flat/flute modification factor can thus be written as: 

3 3K b cR= +  Equation 4.9 

where, b 4.4806E 03= − − , c 1.0061= , 3R t / 0.0898=  and t  is in inches. 

A very good fit of the two plots in Fig. 4.11 from the analysis can be observed. 

The average difference between both curves is 0.17%. 

 

Figure 4.11: Variation of modification factor K3 with flute/flat thickness ratio R3 
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4.4.1.4 Flat/Flute Young’s Modulus Modification Factor, K4 

Finally, following the same approach, an equation for the modification factor of 

core laminate material stiffness and the equivalent modulus of elasticity is derived. In 

Equation 4.6, it can be recall that xE and 11E  have a linear relationship. Fig. 4.12 shows 

the relationship between elastic modulus ratio 4 11 11bR ( E / E )=  and modification 

factor 4 x x 11bK ( E / E (E ))= . This relationship can be expressed by the following equation: 

4 4K g kR= +  Equation 4.10 

where g 3.8144E 02= − , k 0.9625= , 11
4

ER (1.71E 6)= +  and 11E  is in psi. 

Just as was done in the previous cases, a very good fit of the two plots from the 

analysis can be noticed. (Fig. 4.12) The difference computed between both sets of data 

is about 0.33%. 
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4.4.2 Formula for Predicting Longitudinal Young’s Modulus of the Core 

Having derived and discussed the interrelationship between panel parameters, 

the following formula is now proposed for calculating the modulus of elasticity in the 

longitudinal direction xE . 

n
x 1 2 3 4E K K K K aW=  Equation 4.11 

where a 1.6609E 05= + , n 1.0083= − , W is the flute width (inches), 1K represents the 

half-wavelength modification factor from Equation 4.7, 2K  symbolizes the panel depth 

modification factor from Equation 4.8, 3K refers to the flat/flute thickness modification 

factor from Equation 4.9 and 4K refers to the flat/flute Young’s Modulus modification 

factor from Equation 4.10.  

Figure 4.12: Variation of modification factor K4 with material 
young modulus ratio R4 
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Simplification of the equation by substituting K1 to K4 into Equation 4.11 yields 

the formula in Equation 4.12: 

m p n
x 11E KL H W tE=  Equation 4.12 

where K 1.0580= , m -5.2332E - 02= , p 4.7176E 02= −  and n -1.0083= . 

4.5 Parameters Affecting the Young’s Modulus in the Transverse Direction 

Here again, a uniformly distributed load is applied to the core, but this time in the 

transverse direction. Rigid elements are used at the two lateral ends for load application 

and support to ensure uniform displacement. Simple support boundary conditions are 

applied just as was done in Section 4.4. The transverse displacement is obtained, and 

E  is calculated using the constitutive stress-strain relationship below: 

y
y

W
E

W
σ

=
Δ

 Equation 4.13 

The equivalent elastic modulus yE  is plotted against flute width, half wavelength 

and panel depth. This is shown in Fig. 4.13. From the results, the flute half wavelength L 

is seen to have a more significant effect on the equivalent elastic constant. With other 

parameters held constant at their basic values, L is varied within the range of 1 inch to 

10 inches. The relationship between the half wavelength L  and the elastic modulus Ey 

can be expressed as follows: 

n
yE aL=  Equation 4.14 

where a 7.2066E 05= +  and n -3.4594= . 
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Fig. 4.14 shows that an acceptable fit exists between the proposed equivalent 

formula in Equation 4.14 and the results of the actual configuration model obtained from 

the finite element analysis. The difference between both sets of results is about 5%. 

 

Figure 4.13: Variation of Ey with panel depth, flute-width and half-wavelength 
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The flute width W is varied within the range of 0.5 in. to 5 in. keeping the other 

parameters constant. (Fig. 4.15) As the flute width increases, there is a corresponding 

increase in the elastic constant, and this relationship can be expressed thus: 

yE d mlnW= +  Equation 4.15 

where d 2.184972E 03= −  and m 6.5441E 03= − . 

 

 

Figure 4.14: Variation of Ey with half-wavelength L 
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A good curve fit exists between the graphs for the proposed equivalent equation 

and the actual configuration model as can be observed from Fig. 4.15. The difference 

between both curves is approximately 1.2%. 

The panel depth H, on the other hand, has only slight effect on the elastic 

modulus as it is varied from 2 in. to 20 in. (Fig. 4.13) As this parameter is increased, 

there is a decrease in the equivalent elastic constant. This variation can also be seen 

from Fig. 4.16, and can be expressed by the following equation: 

r
yE fH=  Equation 4.16 

where f 6.8590E 03= +  and r -2.5138E - 02= . 

 

Figure 4.15: Variation of Ey with flute-width W 
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Fig. 4.16 shows a very good curve fit between the two plots obtained from the 

analysis. The difference is about 0.6%.  

The relationship between the flat/flute thickness t and the elastic constant as it is 

varied from 0.01 in. to 0.2 in. can be observed from the plot in Fig. 4.17, and the 

relationship can be expressed by the following equation: 

v
yE ut=  Equation 4.17 

where u 1.3490E 06= +  and v 2.2267= . 

From Fig. 4.17, a good curve fit can be seen of the actual configuration model 

results by the proposed equivalent equation (Equation 4.17). The difference computed 

between both sets of data is approximately 5%. 

 

Figure 4.16: Variation of Ey with panel depth H 

0 

0.0015 

0.003

0.0045 

0.006

0.0075 

0 5 10 15 20 25

Panel depth, H (in.)

FEM of Actual Config.
FEM of EquivalentE

la
st

ic
 M

od
ul

us
, E

y (
*1

06  p
si

) 



 91

 

 
Finally, a linear relationship is observed between the modulus of elasticity of the 

flat/flute E11 (or E22) and the equivalent Young’s Modulus Ey. This linear relationship can 

be visualized in the graph in Fig. 4.18. E11 was varied between 500 ksi and 6,500 ksi.  

The variation can be expressed by the following equation: 

y 11E z wE= +  Equation 4.18 

where z 2.0181E - 04=  and w 3.7114E - 03= . 

It is noted that in this case also, there is a very good fit between the graphs for 

the proposed equivalent equation and the actual configuration model as can be 

observed from Fig. 4.18. The difference between both data sets as computed is about 

0.15%. 

Figure 4.17: Variation of Ey with flute-thickness t 
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Here again, Equations 4.14 to 4.18 could be used to compute the elastic 

modulus in the lateral direction (Ey) of the FRP sinusoidal wave core manufactured by 

KSCI when only one of its parameters is changed from the original basic value. 

However, it must be noted that Ey obtained is true only for in-plane (axial) behavior.  

Also, this is limited to the linear elastic range. 

4.5.1 Modification Factors 

To obtain a more general equation relating the elastic modulus Ey and the other 

parameters, the same systematic approach as used in Section 4.4 is followed. 

Therefore, a derivation of modification factors is needed. The most sensitive parameter 

is the half-wavelength, whose relationship with Ey is found in Equation 4.14.  

 

Figure 4.18: Variation of Ey with material Young’s modulus E11 
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4.5.1.1 Flute-width Modification Factor, S1  

It was observed previously that the elastic constant Ey increases as flute-

widthW increases, and this relation is found in Equation 4.15. This behavior is similar to 

that of the modification factor. A plot of the modification factor for flute-width, 

1 y y(W 2)S ( E / E )==  against the ratio 1 2R ( W / W )=  is seen in Fig. 4.19. 2W  represents the 

basic flute-width of 2 in. and y(W 2)E =  is the elastic modulus of the panel when the flute-

width is 2 in. The equation representing this relationship is: 

1 1S mlnR= α +  Equation 4.19 

where 1.0246α = , m 0.9977= , 1R 0.5W=  and W is in inches. 

  

 

Figure 4.19: Variation of modification factor S1 with flute-width ratio R1 
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4.5.1.2 Panel Depth Modification Factor, S2 

From Equation 4.16 (or Fig. 4.16), the modulus of elasticity decreases slightly 

with an increase in panel depthH. To obtain the panel depth modification factor, the 

depth ratio 2 4.57R ( H / H )=  is varied for a range of depth between 2 in. and 20 in., where 

4.57H  is the basic panel depth of 4.57 in. When the ratio y y(H 4.57)E / E =  is plotted against 

2R , the graph in Fig. 4.20 is obtained. The ratio y y(H 4.57)E / E =  is the panel depth 

modification factor 2S , and y(H 4.57)E =  represents the transverse elastic modulus at a 

depth of 4.57 in. The equation defining this relationship can be represented as follows: 

p
2 2S (R )= β  Equation 4.20 

where 1.0065β = , p -2.5138E - 02= , 2R H / 4.57=  and H is in inches. 

 

Figure 4.20: Variation of modification factor S2 with panel depth ratio R2 
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4.5.1.3 Flat/Flute Thickness Modification Factor, S3 

The equation showing the relationship between the flat/flute thickness and the 

elastic constant was derived in the previous section (Equation 4.17). This can also be 

visualized in Fig. 4.17. To obtain the modification factor for the flat/flute 3S , the same 

procedure as previously described for the other parameters is followed. The thickness 

ratio 3 0.0898R ( t / t )= for a range of t  between 0.02 in. and 0.2 in. is computed, where 

0.0898t  is the basic flat/flute thickness, 0.0898 in. A plot of the modification factor 

3 y y(t 0.0898S ( E / E )== against 3R  is made, to obtain the graph in Fig. 4.21. The equation 

can thus be written as: 

c
3 3S b(R )=  Equation 4.21 

where b 0.9603= , c 2.2267= , 3R t / 0.0898=  and t  is in inches. 

  
Figure 4.21: Variation of modification factor S3 with panel depth ratio R3 
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4.5.1.4 Flat/Flute Young’s Modulus Modification Factor, S4 

Finally, a general equation for the modification factor of core laminate material 

stiffness and the equivalent modulus of elasticity is derived. The relationship between 

xE and 11E  is linear as can be seen from Equation 4.18. In Fig. 4.22, modification 

factor 4 x x 11bK ( E / E (E ))= is plotted against elastic modulus ratio 4 11 11bR ( E / E )= . This 

relationship can be expressed by the following equation: 

4 4S g kR= +  Equation 4.22 

where g 3.0766E 02= − , k 0.9676= , 11
4

ER (1.71E 6)= +  and 11E  is in psi. 

  

Figure 4.22: Variation of modification factor S4 with panel depth ratio R4 
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4.5.2 Formula for Predicting Transverse Young’s Modulus of the Core 

From the derivations above, the following formula for calculating the modulus of 

elasticity in the transverse direction Ey is now proposed: 

n
y 1 2 3 4E S S S S aL=  Equation 4.23 

where a 7.2066E 05= + , n -3.4594= , L  is the half-wavelength (in.), 1S represents the 

flute width modification factor from Equation 4.19, 2S symbolizes the panel depth 

modification factor from Equation 4.20, 3S refers to the flat/flute thickness modification 

factor from Equation 4.21 and 4S is the flat/flute Young’s Modulus modification factor 

from Equation 4.22.  

From Equations 4.14 to 4.23, the equation below is obtained:  

k r q
y 11E SL H t (C lnW)E= +  Equation 4.24 

where S 9.3770E 01= + , k -3.4594= , r -2.5138E - 02= , q = 2.2267  and C = 0.3069 . 

4.6 Parameters Affecting the Young’s Modulus in the Vertical Direction 

Using the same loading and boundary conditions as in the two previous cases, 

but this time in the vertical direction, the elastic modulus zE is calculated using the 

constitutive stress-strain relationship below: 

z
z

HE
H

σ
=
Δ

 Equation 4.25 

Fig. 4.23 shows plots of equivalent elastic modulus zE against flute-width, half-

wavelength and panel depth. The most sensitive of the three parameters is the flute-

width W which results in a decrease in zE  as it is varied within a range of 0.5 in. to 5 in. 

As has been the practice, the other parameters are kept constant at their basic 
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parametric values while W is varied. The relationship between the flute-width W  and 

the elastic modulus zE can be expressed as follows: 

n
zE aW=  Equation 4.26 

where a 3.4890E 05= +  and n -0.7194= . 

 

 
From Fig. 4.24, an acceptable curve fit of the actual configuration model results 

obtained from the finite element analysis can be observed. The average difference 

between the curves for the “FEM of Equivalent” and the “FEM for Actual Config.” is 

computed to be about 5%. 

 

 

Figure 4.23: Variation of EZ with panel depth, flute-width and half-wavelength 
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Similarly, varying the half-wavelength L  (and keeping other parameters constant) 

within a range of 1 in. to 10 in., a decrease in zE  is observed as L  increases (Fig. 4.25). 

The equation for this variation can be expressed as follows: 

m
zE dL=  Equation 4.27 

where d 3.5107E 05= +  and m -0.3538= . 

Fig. 4.25 also shows a pretty good curve fit of the actual configuration results 

obtained from the finite element analysis by the proposed equivalent equation (Equation 

4.27). The difference between both curves in the figure is about 6%. 

 

Figure 4.24: Variation of Ez with flute-width W 
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On the other hand, the panel depth H  has only slight effect on the elastic 

modulus as it is varied from 2 in. to 20 in. (Fig. 4.26). There is a decrease in the 

equivalent elastic constant as this parameter is increased. This decrease in zE can be 

expressed by the following equation: 

r
zE fH=  Equation 4.28 

where f 2.0394E 05= +  and r -2.5096E - 02= . 

A close look at Fig. 4.26 reveals a very good curve fit of the actual configuration 

results from the finite element analysis by the proposed equivalent formula in Equation 

4.28. The average difference between both curves is only about 0.5%. 

 

Figure 4.25: Variation of EZ with half-wavelength L 
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Fig. 4.27 shows a linear relationship between the flat/flute thickness t  and the 

elastic constant as t  is varied from 0.02 in. to 0.2 in. The following equation describes 

this relationship: 

zE u vt= +  Equation 4.29 

where u -8.1127E - 04=  and v 2.1833= . 

The curve fit by the proposed equivalent formula in Equation 4.29 of the actual 

configuration results from the analysis can be seen to be very good. (Fig. 4.27) The 

difference between the two graphs in the figure is only about 0.1%. 

Figure 4.26: Variation of EZ with panel depth H 
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Lastly, a linear relationship between the modulus of elasticity of the flat/flute 11E  

(or 22E ) and the equivalent Young’s Modulus zE  is also observed. Fig. 4.28 shows that 

as 11E  increases from 500 ksi to 6,500 ksi, zE  rises correspondingly. The formula below 

defines this variation: 

z 11E z wE= +  Equation 4.30 

where z 2.5707E - 03=  and w 0.1125= . 

Once again, from Fig. 4.28 a very good curve fit between both plots can be 

observed. The average difference is computed to be about 0.2%. 

 

Figure 4.27: Variation of EZ with flute thickness t 

0 

0.1

0.2

0.3

0.4

0.5

0 0.05 0.1 0.15 0.2 0.25
Flute thickness, t (in.)

FEM for Actual Config.
FEM for Equivalent

E
la

st
ic

 M
od

ul
us

, E
z (

*1
06  p

si
) 



 103

  

 
A similar conclusion can be reached about Equations 4.26 to 4.30 as was done 

for Ex and Ey. These equations could be used to compute the elastic modulus in the 

vertical direction (Ez) of the FRP sinusoidal wave core manufactured by KSCI when 

only one of its parameters is changed from its original basic value. It must be noted 

though, that Ez obtained is true only for in-plane (axial) behavior and is limited to the 

linear elastic range. 

4.6.1 Modification Factors 

Just as was done for the two other directions, modification factors of the 

equivalent elastic constant in the vertical direction for variation in core parameters is 

now sought. This will lead to a more general equation relating zE  and core properties. 

Figure 4.28: Variation of EZ with core material Young’s Modulus E11 
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First of all, it should be noted that the most sensitive parameter is the flute-width. The 

equation relating zE and W is found in Equation 4.26.  

4.6.1.1 Half-wavelength Modification Factor, D1  

From Fig. 4.25, zE  decreases as half-wavelengthL increases, and this relation is 

found in Equation 4.27. Similarly, by plotting the modification factor for half-wavelength, 

1 z z(L 4)D ( E / E )==  against the ratio 1 4R ( L / L )= , the graph in Fig. 4.29 is obtained. 4L  

represents the basic half-wavelength of 4 in. and z(L 4)E =  is the elastic modulus of the 

panel when the half-wavelength is 4 in. The equation can be expressed as follows: 

m
1 1D R= α  Equation 4.31 

where 1.1021α = , m -0.3538= , 1R 0.25L=  and L is in inches. 

 

Figure 4.29: Variation of modification factor D1 with wave-length ratio R1 
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4.6.1.2 Panel Depth Modification Factor, D2 

The second modification factor required is that with respect to panel depthH. 

Notice from Fig. 4.26 that zE increases slightly as H rises. The panel depth modification 

factor is obtained by varying the depth ratio 2 4.57R ( H / H )=  for a range of depth between 

2 in. and 20 in., where 4.57H  is the basic panel depth of 4.57 in. By plotting this variation, 

the graph in Fig. 4.30 is obtained. 2D  represents the panel depth modification 

factor z z(H 4.57)E / E = , where z(H 4.57)E =  is the transverse elastic modulus at a depth of 4.57 in. 

The following equation defines this relationship: 

p
2 2D R= β  Equation 4.32 

where 1.0064β = , p -2.5096E - 02= , 2R H / 4.57=  and H is in inches. 

  

Figure 4.30: Variation of modification factor D2 with panel depth ratio R2 
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4.6.1.3 Flat/Flute Thickness Modification Factor, D3 

The flute/flute thickness t  has a linear effect on the elastic modulus zE . This 

behavior is found in Fig. 4.27 and Equation 4.29. The thickness ratio, 3 0.0898R ( t / t )= is 

computed for a range of t  between 0.02 in. and 0.2 in. where 0.0898t  is the basic flat flute 

thickness, 0.0898 in. In Fig. 4.31, the modification factor 3 z z(t 0.0898D ( E / E )== is plotted 

against 3R . The expression for the flat/flute modification factor can be written as follows: 

3 3D b cR= +  Equation 4.33 

where b -4.1591E - 03= , c 1.0051= , 3R t / 0.0898=  and t  is in inches. 

  

Figure 4.31: Variation of modification factor D3 with flute/flat thickness ratio R3 
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4.6.1.4 Flat/Flute Young’s Modulus Modification Factor, D4 

The final parameter to be considered is the core laminate material stiffness 11E . 

An equation for modification factor of the equivalent modulus of elasticity due to 11E  is 

sought. It can be recalled from Equation 4.30 that xE and 11E  have a linear relationship. 

Fig. 4.32 shows the relationship between elastic modulus ratio 4 11 11bR ( E / E )=  and 

modification factor 4 z z 11bD ( E / E (E ))= . From a regression analysis, this relationship can 

be expressed in the form: 

4 4D g kR= +  Equation 4.34 

where g 1.3179E - 02= , k 0.9859= , 11
4

ER (1.71E 6)= +  and 11E  is in psi. 

It is noted that in each case, there is very good curve fit of the “FEM of Actual 

Config.” plot by the “FEM of Equivalent” plot from the analysis. 

  
Figure 4.32: Variation of modification factor D4 with material Young’s Modulus ratio R4 
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4.6.2 Formula for Predicting Vertical Young’s Modulus of the Core 

The following formula for calculating the modulus of elasticity in the vertical 

direction zE  is now proposed: 

n
z 1 2 3 4E D D D D aW=  Equation 4.35 

where a 3.4890E 05= + , n -0.7194= , W = flute width (in.), 1D  represents the half-

wavelength modification factor from Equation 4.31, 2D  refers to the panel depth 

modification factor from Equation 4.32, 3D symbolizes the flat/flute thickness 

modification factor from Equation 4.33 and 4D  is the flat/flute Young’s Modulus 

modification factor from Equation 4.34. 

From Equations 4.26 to 4.35, the modulus of elasticity becomes: 

g u v
z 11E DW L H tE=  Equation 4.36 

where D 3.8002= , g -0.7194= , u -0.3538=  and v -2.5096E - 02= . 

4.7 Verification of Results 

The results from the above formulation are compared with those from the work of 

Davalos et al. (2001). Davalos et al. developed an approximate solution for the 

equivalent elastic modulus in the longitudinal direction of the core Ex which can be seen 

in Equation 2.8. Different values for three of the parameters (core height H, flat/flute 

thickness t and core mat elastic modulus E11) are used in a finite element analysis in 

this study to compute Ex. With those same parametric values, Ex is calculated using 

Equation 2.8 as well as the proposed formula in Equation 4.12. A comparison of the 

results from each of the two equations with the finite element analysis is presented in 
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Table 4.1 and Fig. 4.33. (There is no available information to compare with the results 

from the present study of the other two directions Ey and Ez). 
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       Ex (*106 psi)   
% Diff with Actual 
Configuration FEM Results 

Data # 
H 

(in.) 
t 

(in.) 

E11    
(*106 
psi) 

Actual 
Configuration

FEM 

Equivalent 
FEM 

(Present)   
(Eqn. 4.12) 

Davalos et 
al. (Eqn. 

2.8) 

Equivalent 
FEM 

(Present) Davalos et al. 
1 6 0.04 1 0.0458 0.0469 0.04 2.40 12.71 
2 22.5 0.04 1 0.0473 0.0473 0.04 0.04 15.35 
3 6 0.15 1 0.1743 0.1774 0.15 1.74 13.92 
4 22.5 0.15 1 0.1795 0.1773 0.15 1.26 16.44 
5 6 0.04 5 0.2212 0.2221 0.2 0.39 9.58 
6 22.5 0.04 5 0.2337 0.2364 0.2 1.13 14.42 
7 6 0.15 5 0.8412 0.8418 0.75 0.07 10.84 
8 22.5 0.15 5 0.8878 0.8863 0.75 0.17 15.52 

 

 

Table 4.1: Comparison of results for Ex 
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It can be observed from Table 4.1 and Fig. 4.33 that the proposed equation 

(Equation 4.12) compares very well with the results from finite element analysis (FEM). 

The average difference between both data sets is about 0.8%. On the other hand, 

Equation 2.8 (Davalos et al.) does not compare as well with the results from FEM. 

There is an average difference of about 14% between both results. Equation 2.8 is a 

much simplified formula which does not take into account the geometric configuration of 

the core structure. It assumes that the stiffness contribution of the flute is negligible. 

Thus the proposed formula in Equation 4.12 can be used with a high level of 

confidence. 

Therefore, with the equations derived in this chapter, equivalent elastic constants 

could be calculated from known geometric parameters and material properties.  

Figure 4.33: Plots of Ex results for comparison 
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CHAPTER 5 -  DERIVATION OF PROPERTIES FOR OUT-OF-

PLANE BEHAVIOR  

 
5.1 Introduction 

In the previous two chapters attention was given to elastic stiffness properties for 

in-plane behavior of the FRP sinusoidal wave core. As discussed, the application of this 

study would be in situations where axial effects of a structure are being analyzed. In this 

chapter, focus is directed to properties related to out-of-plane behavior. This behavior 

will include the bending of beams and decks. In this chapter, we develop and verify an 

approach to obtain the flexural and shear stiffness properties of the sinusoidal wave 

core sandwich panel. Then in chapter 6, following the verified approach, parametric 

studies will be performed to develop stiffness equations for the out-of-plane behavior. 

To achieve our goal in this chapter, we seek to derive a single layered equivalent 

model of the entire sandwich panel – that is, a single layer whose out-of-plane behavior 

is the same as the actual sandwich panel including the top and bottom faces (or called 

skins) and the core. In the case of in-plane behavior, once we know the equivalent core, 

the faces can be added to the equivalent core and the total in-plane properties can be 

calculated easily. However, it is not the case for the out-of-plane behavior. Therefore, 

the faces are added to the finite element model to predict an equivalent layer for the 

entire section, which makes it more complicated than the case of in-plane behavior. As 

we will find, this approach yields properties that are more valid for bending deflection 

purposes than does the three-layered equivalent model formulated in the previous two 

chapters that should be limited to the applications of in-plane behavior.  
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First, the equivalent properties in the three orthogonal directions are derived 

using a beam model with the actual core configuration. Using a beam to represent a 

deck is by no means a new concept. In bridge design, one of the approaches used is to 

view the deck as a series of several beams joined together laterally. The beam has 

either a unit or an equivalent width. Similarly, in the approach proposed here, a beam 

model with a certain width will be used.  

After the properties are derived, they are verified by comparing deflection results 

from finite element modeling of a sandwich beam and its equivalent model. Once 

verified, the properties can finally be applied to the equivalent model of a full-scale 

sinusoidal core sandwich bridge panel. A final verification is done to check if the 

application to a full scale bridge panel is valid. 

5.2 Beam Analysis 

To accurately predict the out-of-plane behavior of the sandwich structure, the 

beam is subjected to bending forces instead of axial loads. With this approach, the 

effects of the stiffness contribution provided by both the face laminates and the core of 

the sandwich structure for a single layer equivalent structure are captured. 

Two factors contribute to the deflection of beams subjected to vertical loads – 

shear and bending. The shear contribution, however, becomes less significant as the 

beam becomes shallower. Therefore, use is made of a beam model with a very high 

span-to-depth ratio – 15 foot span and only 5 inches deep. The shear contribution to 

deflection can thus be neglected. This is a safe assumption for a beam whose span to 

depth ratio is greater than 10. 
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5.2.1 Modulus of Elasticity in Longitudinal Direction, Ex 

The first step in this approach is to derive the equivalent elastic modulus in the 

longitudinal direction Ex for out-of-plane (bending) behavior. The beam model is 

subjected to conditions of a cantilever. To obtain Ex, stiff shell elements are placed at 

the two longitudinal ends of the sandwich beam model. The beam is 15 foot in span (L), 

8 inches wide and 5 inches deep. It is cantilevered by constraining the nodes at one end 

for translational and rotational motions. At the other end, a force of 10,000 Ib is applied 

in the vertical direction, causing the beam to bend about its lateral axis. In this way, the 

structure can be analyzed as a simple beam using the classic beam theory. From the 

finite element results for deflection, Ex can be calculated as below: 

3
z

x
z yy

P LE
3 I

=
δ

 Equation 5.1 

where Pz is the applied vertical force, L represents the span of the beam, zδ  refers to 

the vertical end deflection of the beam and Iyy symbolizes the moment of inertia about 

the lateral axis. 

5.2.2 Modulus of Elasticity in Lateral Direction, Ey 

The same approach is used to derive the equivalent elastic modulus in the lateral 

direction. However, in this case, the beam is made 15 feet in the lateral direction (W) of 

the deck and 8 inches in the longitudinal direction of the deck since interest is in the 

transverse direction. As previously, rigid shell elements are used, but this time placed at 

the two transverse ends of the beam model. The same constraints are imposed to 

simulate a cantilever, and a 10,000 Ib vertical load is applied at the free end of the 

cantilever. Ey can thus be computed from the formula below: 
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3
z

y
z xx

P WE
3 I

=
δ

 Equation 5.2 

where Pz refers to the applied vertical force, W is the span of the beam in the 

transverse direction, zδ  represents the vertical end deflection of the beam and Ixx is the 

moment of inertia about the longitudinal axis. 

5.2.3 Shear Modulus, G 

The shear contribution to deflection is sometimes ignored in structural analysis. 

In the case of a beam, for instance, it is usually assumed that the deflection is mainly 

due to the bending of the beam. But there is also shear contribution to that deflection. 

For long beams, this contribution from shear can be neglected since it does not 

contribute significantly. In other cases such as deep beams and sandwiched structures, 

however, the shear contribution has to be accounted for, because it can become a 

major factor in the structure’s behavior. A more accurate procedure requires that the 

deflection in a beam is a summation of the contributions from bending and shear. Thus, 

total bending shearΔ = Δ + Δ  Equation 5.3a 

For a cantilever beam with a point load at the free end, 

3

bending
PL
3EI

Δ =  Equation 5.3b 

and, 

shear
s

PL
GA

Δ =  Equation 5.3c 

Since the shear contribution is not significant in long beams, the beam used is 

one which has a small span-to-depth ratio. It is also pertinent to note that this ratio is not 



 116

made too small, because the beam theory which is used here does not apply to very 

deep beams. 

To obtain the equivalent shear modulus, a point load is applied to the free end of 

the cantilever beam model. The beam model used is 24 in. long, 8 in. wide and 5 in. 

deep. The relationship defined in Equation 5.3 above can therefore be applied. 

5.2.3.1 Equivalent Shear Modulus, Gxy 

Rigid shell elements are placed at the longitudinal ends of the model. In this 

case, the longitudinal direction (x) of the model serves as the span, which is 24 in. long 

(L). The nodes on one of the ends are fixed by constraining both rotational and 

translational degrees of freedom. At the other end, the nodes are kept free to simulate a 

cantilevering beam. At this same free end, a force Py of 1,000 Ib is applied to the 

central node in the lateral (y) direction. This force causes a displacement in the lateral 

direction yδ , which is used to calculate the shear modulus Gxy by the following relation: 

3
xy y s y y x zzG P L (A ( - (P L 3E I )))= δ  Equation 5.4 

where, shear area, As is 1.2 times area y-z, Ex is obtained from Equation 5.1 and Izz 

represents the moment of inertia about the vertical axis. 
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In Fig. 5.1, the ANSYS model used to derive the shear modulus Gxy can be 

seen. For clarity, the top face of the model is not shown. Fig. 5.2 shows the deflection 

contour of the model analysis. 

 

Figure 5.1: ANSYS model for deriving equivalent sandwich beam Gxy 
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5.2.3.2 Equivalent Shear Modulus, Gyx 

The approach above is further verified by obtaining the shear modulus Gyx. It is 

expected that Gxy will compare very closely to Gyx. This time the rigid shell elements 

are placed at the two lateral ends. The beam is modeled as a cantilever in the lateral (y) 

axis by constraining the nodes at one end from both translational displacement and 

rotation, while those of the other end are kept free. At the free end, a point load of 1,000 

Ib (Px) is applied to the central node in the longitudinal (x) direction. Similarly, the shear 

modulus can be calculated from the relation below: 

3
yx x s x x y zzG P W (A ( - (P W 3E I )))= δ  Equation 5.5 

Figure 5.2: Deflection contour for sandwich beam in deriving Gxy 
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where W represents the span of the model (in the lateral direction), Ey is obtained from 

Equation 5.2, shear area, As is 1.2 times area x-z and Izz symbolizes the moment of 

inertia about the vertical axis. 

Fig. 5.3 shows the ANSYS model used to derive the shear modulus Gyx. The top 

face of the model is not shown for clarity purposes. Fig. 5.4 shows the deflection 

contour of the model. 

 

 

Figure 5.3: ANSYS model for deriving equivalent sandwich beam Gyx 
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The equivalent properties derived from the analysis approach described above 

are presented in Table 5.1 below. As can be seen from the table, the shear moduli Gxy 

and Gyx compare very well. They differ by only about 4%. 

Ex (psi) 997,306.66 
Ey (psi) 819,550.03 
Gxy (psi) 24,364.14 
Gyx (psi) 25,423.66 

 
Properties in the vertical (z) direction such as transverse shear (Gxz and Gyz) 

and modulus of elasticity in the vertical direction (Ez) are ignored. This is because their 

contribution to vertical deflection and strain is negligible.  

Figure 5.4: Deflection contour for sandwich beam in deriving Gyx 

Table 5.1: Single-layer equivalent properties of sandwich beam 
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5.3 Verification of Elastic Constants 

5.3.1 FEM of Actual Configuration Beam 

To verify these properties derived in the previous section, a beam with a span of 

15 ft, width of 8 in. and depth of 5 in. is modeled having the sinusoidal core 

configuration and sandwich construction. The beam is simply supported by constraining 

nodes for vertical and lateral translations (uz and uy) at one end, and vertical translation 

(uz) at the other. A concentrated load of 10,000 Ib is applied at its midspan. This beam 

is analyzed using finite elements analysis, and the deflection results at quarter points 

along the span are recorded (Table 5.2). 

5.3.2 FEM of Equivalent Beam 

An equivalent beam with the same dimensions is also modeled using one-

layered shell elements. The same loading and support conditions as used for the 

sandwich beam model are also used for this equivalent. Modeling as an orthotropic 

material, the equivalent properties derived in the previous section is used for this model. 

After the finite element analysis is performed, the deflection results at quarter points 

along the span are also noted (Table 5.2). 

5.3.3 Hand-Calculation 

Further verification of these results is done by performing hand-calculations for 

the beam using beam theory. Ignoring shear contribution to the deflection (which is a 

safe assumption in the view of the fact that span/depth > 10), the beam deflection can 

be calculated from the moment-curvature relationship shown in Equation 5.6 below: 

2

2

d v(x)EI M(x)
dx

=  Equation 5.6 
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From this relationship, the deflection for a simply supported beam with 

concentrated load at midspan can be expressed by the following formula in Equation 

5.7): 

3 3 2Px P[x L 2] PL xEIv(x)
12 6 16

−
= − −   Equation 5.7 

Three cases are considered for calculating the deflection using the approach 

above. The three cases vary in the way the flexural stiffness EI is calculated. The 

following section considers each case. 

5.3.3.1 Case 1 (flange-web configuration) 

In the first case, the cross-section of the beam is assumed to be composed of top 

and bottom flanges (representing the face laminates) and nine vertical webs. The 

distance between successive webs is the same for all elements. These web elements 

represent the flat and flute laminates which form the core of the sandwich beam. The 

distance between successive webs is 1 inch. In other words, the idealized model 

represents a cross-section of the actual sinusoidal core sandwich beam where the flats 

and flutes are equally spaced. This cross-section is well illustrated in Figure 5.5 below. 

 

 

 

Figure 5.5: Cross-section of sandwich beam for hand calculation – Case 1 

8@1 in. = 16 in. 

fla
t 1

 

0.43 in. 

4.14 in. 

0.43 in. 

fla
t 2

 

fla
t 3

 

fla
t 4

 

fla
t 5

 

flu
te

 1
 

flu
te

 2
 

flu
te

 3
 

flu
te

 4
 



 123

The total flexural stiffness is obtained by summing up the stiffnesses of the two 

faces and the core. The core flexural stiffness is a sum of flexural stiffnesses of all webs 

making up the core. Thus, the stiffness EI used in Equation 5.7 is: 

1 1 2 2EI mE I nE I= +  Equation 5.8 

where, E1I1 is the flexural stiffness of one flange, E2I2 is the flexural stiffness of one 

web, m refers to the number of flanges = 2 and n represents the number of webs = 9. 

5.3.3.2 Case 2 (3-layered) 

In the second case, the beam is analyzed as a three-layered equivalent model. 

The three layers all have the same width equal to that of the face laminates. The 

combined thickness of the three layers is the same as the total depth of the beam, with 

the top and bottom layers retaining their original dimensions. The moment of inertia for 

each layer is obtained using the parallel axis theorem, so that the equivalent flexural 

stiffness used in Equation 5.7 is: 

1 1 2 2EI mE I E I= +  Equation 5.9 

where, E1I1 represents the flexural stiffness of the face layer, E2I2 is the flexural 

stiffness of the middle layer and m symbolizes the number of faces = 2. For the middle 

layer, the in-plane elastic modulus discussed in Chapter 3 is used for simplification.  

5.3.3.3 Case 3 (1-layered) 

In the third and final case, the cross-section is treated as having a single layer 

whose equivalent properties were derived in Section 5.2 and shown in Table 5.1. The 

calculation of the moment of inertia I was done based on an equivalent rectangular 

cross-section with width equal to the width of the face laminates. The depth of the 
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section is equal to the entire depth of the beam. With these properties, the equivalent 

flexural stiffness EI used in Equation 5.7 above is calculated. 

5.3.4 Comparison of Results 

Having performed the analysis above, the results for deflection at quarter points 

along the beam span are presented in Table 5.2. The finite element analysis results for 

the actual configuration beam model are compared with those from finite element 

analysis of the equivalent model and hand-calculations. 

A closer look at the results in Table 5.2 indicates a very good deflection 

comparison of the single-layer equivalent beam developed in Section 5.3.2 with the 

actual configuration model described in Section 5.3.1. The difference recorded for the 

midspan deflection is less than 0.1%. This is further proof of the accuracy of performing 

finite element analysis on the less-complicated single-layered equivalent structure. 

Similarly, the approach described in Section 5.3.3.3 for the hand calculation of a single-

layered equivalent beam also yields good results. The difference for the midspan 

deflection is also less than 0.1%. Thus, rather than performing a finite element analysis 

on the complex sinusoidal core sandwich beam, the analysis can be carried out with 

very good results using the less complicated equivalent model. This analysis can be 

done either by performing finite element modeling on the single layer equivalent or hand 

calculation using traditional methods in conjunction with the approach described in 

Section 5.3.3.3. 

However, the results of the hand calculation for Cases 1 and 2 (Section 5.3.3.1 

and 5.3.3.2) do not compare as well.  They each have a difference of over 20% from the 

actual configuration finite element model. The assumptions made – such as 
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approximating the core to an arrangement of nine vertical web elements – introduce 

some errors to the results. The effects of the actual geometry of the core structure are 

not accounted for. Therefore, the two methods could be used in preliminary calculations 

or verification of results. 

Model 
¼-

span
Mid-
span 

¾-
span 

Mid-span 
difference with 

Actual 
        Config. FEM (%) 

FEM of Actual Configuration 9.832 14.363 9.832   
FEM of Equivalent 9.884 14.377 9.884 0.097 

Case 1: Hand-Calc (flange-
web) 7.363 10.710 7.363 25.434 

Case 2: Hand-Calc (3-layer) 7.652 11.129 7.652 22.513 
Case 3: Hand-Calc (1-layer) 9.882 14.374 9.882 0.079 

 

5.4 Application to FRP Panel 

Having derived the equivalent properties and verified them using a beam model, 

the approach can now be applied to FRP panels. In this section, the validity of the 

properties derived is tested for panels. Full deck verification is therefore performed.  

In the full panel analysis, an actual panel model with the sinusoidal core 

configuration and sandwich structure is created using finite element modeling. The full 

deck has dimensions 15 ft x 7.67 ft x 5 in. It is simply supported over its span of 15 ft 

and has a total load of 10 kips applied at its mid-span.  

However, symmetric conditions are used so that half the span is modeled. This 

approach reduces the processing time of the ANSYS finite element software. 

Additionally, because of the complex configuration of the FRP panel, modeling a full-

scale deck would exceed the software’s capacity making analysis impossible. As a 

Table 5.2: Comparison of Deflection Results (in.)
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result of these limitations, a half-span of 7.5 ft is modeled using elastic shell elements. 

This model has 66,600 elements and 48,384 nodes. To simulate symmetric conditions, 

the left end of the panel is constrained for translation in the lateral and vertical directions 

only (uy and uz). On the right end, the nodes are constrained for displacement in the 

longitudinal direction and rotation about the lateral axis (uy and Roty). A total load of 5 

kips is applied on elements within an area of 8 in. x 12 in. on the mid-span of the 

symmetric model. This load is applied as pressure with a value of 52.0833 psi.  

To verify the equivalent properties derived in the previous section, an equivalent 

panel model is created. The model is made using a single layer of elastic shell 

elements. The properties presented in Table 5.1 are used for this model. It has the 

same dimensions, loading conditions and constraints as that for the actual model 

analyzed in the preceeding paragraph.  

After finite element analysis is performed on both models, the results are 

checked and compared for deflection. Deflection results are obtained for two cases. 

Firstly, at quarter points along the longitudinal centerline, and secondly, at quarter 

points along the lateral right end of the model. These results are recorded and 

compared as shown in Table 5.3. 
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  0 22 45 67 90 
Actual Config. Model 0 0.4205 0.8070 1.0778 1.2016 

Equivalent Model 0 0.4501 0.8273 1.1020 1.2178 
% Diff.   6.5739 2.4501 2.1960 1.3303 

 

  0 23 46 69 92 
Actual Config. Model 1.2191 1.1798 1.2016 1.1801 1.2196 

Equivalent Model 1.2365 1.2090 1.2178 1.2090 1.2365 
% Diff. 1.4072 2.4152 1.3303 2.3904 1.3668 

 
5.5 Summary 

From the results presented in Table 5.3, we see very good comparison between 

the actual and equivalent models. The average difference between results for both 

models is about 2%. This good comparison shows that we can confidently carry out a 

stiffness analysis and design using the less complex equivalent model. This makes for a 

more simplified and yet reliable design approach. 

Table 5.3a: Comparison of Deflection Results between Actual Configuration and 
Equivalent Models. Points in the longitudinal direction along the central line (in.) 

Table 5.3b: Comparison of Deflection Results between Actual Configuration and 
Equivalent Models. Points in the lateral direction along the midspan (in.) 
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CHAPTER 6 -  PARAMETRIC STUDIES FOR OUT-OF-PLANE 

BEHAVIOR 

6.1 Introduction 

Having developed and verified an approach for obtaining the equivalent flexural 

and shear stiffness of the sinusoidal wave core panel in Chapter 5, attention is given in 

this chapter to developing parametric equations. From these equations, the equivalent 

stiffness properties from known panel parameters can be obtained. In other words, 

Chapter 5 dealt with a structure whose components have specific dimensions and 

properties. Now, however, the focus is directed to obtaining the equivalent stiffness 

properties for a wider range of parametric values. A systematic approach where each 

parameter is considered separately is used. This method is based on the assumption 

that the effects of the parameters are independent of each other.   

The parameters used in this study are defined in Tables 6.1 and 6.2 below: 

    Faces     

Ex1 and Ex2 
Young's modulus in x-direction of top and bottom 
face 

Ey1 and Ey2 
Young's modulus in y-direction of top and bottom 
face 

t1 and t2 Thickness of top and bottom face   

    Core     
E Young's Modulus of randomly oriented core material 
W Flute-width of core     
L Half-wavelength of core     
H Depth of core       
t Thickness of core material     

Table 6.1: Face parameters used for stiffness equations  

Table 6.2: Core parameters used for stiffness equations 
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The properties, referred to as basic values, are also summarized in Table 6.3. 

These parametric values represent those for the FRP panels developed by Kansas 

Structural Composites Inc., the same structure which has been the basis of this 

research work. 

Basic Parameters 
E (psi) 1.71E+06 
W (in.) 2 
L (in.) 4 
H (in.) 4.57 
t (in.) 0.0898 

Ex1 and  Ex2 
(psi) 2.92E+06 

Ey1 and Ey2 
(psi) 1.87E+06 

t1 and t2 (in.) 0.43 
Gxy1 (psi) 5.46E+05 

 

6.2 Flexural Stiffness ExIyy 

The parametric study commences with the flexural stiffness of the panel when 

subjected to vertical loading. The intent is to understand the bending behavior about the 

lateral axis of the structure. To study this effect, consideration is given to a beam with a 

very high span to depth ratio. In this way the less significant shear contribution to 

deflection can be ignored. 

Following a systematic approach, each parameter is first varied within a 

reasonable range of values while keeping others constant, each time computing the 

flexural stiffness. The elastic modulus is obtained using the same procedure used in 

Chapter 5, with the exception that the aim this time is to compute the flexural stiffness 

EI. Rigid shell elements are placed at the two longitudinal ends of the sandwich beam 

Table 6.3: Basic Properties 
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model. The beam has a span of 15 ft, width of 8 in. and depth of 5 in., and cantilevered 

by constraining the nodes at one end for translational and rotational motions. At the 

other end, a force of 10,000 Ib is applied in the vertical direction, causing the beam to 

bend about its lateral axis. From the deflection results obtained through finite element, 

ExIyy can be calculated from Equation 6.1 below: 

3
z

x yy
z

P LE I
3

=
δ

 Equation 6.1 

where, Pz is the applied vertical force, L represents the span of the beam and zδ  

symbolizes the vertical end deflection of the beam. 

6.2.1 Variation of Stiffness with Core Height, H 

While keeping all other parameters constant at their basic values, the core height 

H is varied within a range of 4.57 in. to 23.57 in. The analysis revealed that the flexural 

stiffness ExIyy is more sensitive to the core height than any other parameter. As can be 

observed from Fig. 6.1, the stiffness varies from about 80,000 ksi to almost 3,000,000 

ksi within the range of variation of the core height. This high sensitivity is not surprising 

when we consider the fact that in general, the moment of inertia is a function of depth to 

the third degree. The relationship depicted in Fig. 6.1 can be expressed mathematically 

by the formula below: 

4 3 2
x yy H 1 2 3 4 5(E I ) x H x H x H x H x= + + + +  Equation 6.2 

where 1x 8.3627E - 04= , 2x -6.9531E - 03= , 3x 5.0966= , 4x -11.2596=  and 

5x 29.7750=  

Equation 6.2 can be used to compute the flexural stiffness ExIyy of the Kansas 

Structural Composite FRP panel for any core height H if all the other parameters are 
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kept constant at their basic values. An example would be the No-Name Creek Bridge in 

Russell, Kansas which has a core height of 20.5 in. From Equation 6.2, it would have a 

stiffness of 2.029E+9 Ib-in2. 
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Fig. 6.1 also shows how well the proposed equivalent equation predicts the 

results of the actual configuration model from the finite element analysis. The difference 

between both curves is about 0.13%, a very good approximation. 

6.2.2 Variation of Stiffness with Face Parameters 

The effects on stiffness of the three parameters of the face laminate are the 

same for both the top and bottom face. Therefore, parametric studies of just the top face 

would be considered, and the same results could be applied to the bottom. 

First, the elastic modulus in the longitudinal direction Ex1 is varied within a range 

of 10 ksi to 100,000 ksi, while all other parameters are kept constant at the basic 

Figure 6.1: Variation of Stiffness with Core Height H 
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values. The results of this variation can be visualized in Fig. 6.2. As can be observed, 

the stiffness is very sensitive to this parameter at lower values, but as Ex1 increases, 

the sensitivity decreases having a much gentler gradient. Depending on the value of 

Ex1, the stiffness can be computed from Equation 6.3:  

4 3 2
x yy 1 x1 2 x1 3 x1 4 x1 5E I f E f E f E f E f= + + + +  Equation 6.3 

for x1(0.01 E 5)≤ ≤ , 

1f -0.9163= , 2f 9.1536= , 3f -30.628= , 4f 51.427=  and 5f 33.494=  

for x1(5 E 100)≤ ≤ , 

1f -3.6338E - 06= , 2 9.3304E-04f = , 3f -8.6537E-02= , 4f 3.5812=  and 

5f 82.283=  

where Ex1 is in Msi. 

Equation 6.3 can be used to calculate the flexural stiffness ExIyy of the Kansas 

Structural Composite FRP panel for any value of elastic modulus Ex1 if all the other 

parameters are kept constant at their basic values. For example, if for some reason a 

different top or bottom face material is used that has a different longitudinal elastic 

modulus with all other properties remaining the same. 

It can be noticed from Fig. 6.2, that there is a very good curve fit of the proposed 

equivalent formula and the actual configuration model results from the finite element 

analysis. The difference is only about 0.4%. 

A similar trend with a variation in elastic modulus in the lateral direction Ey1 is 

noticed, though this is a less sensitive parameter since it is serves as the secondary 

modulus in the longitudinal direction. This is depicted in Fig. 6.3. The flexural stiffness is 
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very sensitive to Ey1 at lower values, but has a smaller slope at higher values. Again, 

depending on the value of Ey1, the stiffness can be calculated from the following 

equation (Equation 6.4):  

4 3 2
x yy 1 y1 2 y1 3 y1 4 y1 5E I g E g E g E g E g= + + + +  Equation 6.4 

for y1(0.01 E 5)≤ ≤ , 

1g -2.301= , 2g 19.64= , 3g -50.261= , 4g 53.945=  and 5g 58.421=  

for y1(5 E 100)≤ ≤ , 

1g -4.68E-07= , 2g 1.18E-04= , 3g -1.0484E - 02= , 4g 0.40363= and 

5g 86.925=  

where Ey1 is in Msi. 

Equation 6.4 can be used to calculate the flexural stiffness ExIyy of the FRP 

panel for any value of lateral elastic modulus Ey1 if all the other parameters are kept 

constant at their basic values. For instance, if a different top/bottom face material is 

used that has a different lateral elastic modulus but all other parameters remain the 

same. 
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Figure 6.2: Variation of Stiffness with Face Elastic Modulus Ex1 

Figure 6.3: Variation of Stiffness with Face Elastic Modulus Ey1 
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Again, it can be observed from Fig. 6.3 that the proposed equivalent equation 

well fits the actual configuration model results from the finite element analysis. The 

difference is only about 0.4%. 

The third important parameter is the face thickness. As expected, the panel 

equivalent stiffness increases with a rise in face thickness. The thickness t1 is varied 

from 0.43 in. to 2.5 in. while all other parameters are kept at their constant basic values. 

Fig. 6.4 presents the relationship of stiffness ExIyy with the face thickness t1. The 

following formula (Equation 6.5) represents the same relationship: 

2
x yy 1 1 2 1 3E I l t l t l= + +  Equation 6.5 

where 1l -8.4707= , 2l 65.015=  and 3l 59.633=  

The above equation (Equation 6.5) can be used to compute the flexural stiffness 

ExIyy of the FRP panel for any top or bottom face thickness. As an example, if an 

engineer decides to change just the top face thickness to account for something while 

retaining the original materials and other panel properties, the stiffness of the structure 

can be obtained by solving Equation 6.5. 
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Once again, it can be seen that there is a very good curve fit between the 

proposed equivalent equation and the actual configuration model results of the finite 

element analysis. (Fig. 6.4) The difference is only about 1.4%. 

6.2.3 Variation of Stiffness with Core Parameters 

Apart from the core height which was discussed in the previous section, the other 

core parameters include elastic modulus of the core mat E, flute-width W, flute half-

wavelength L and core material thickness t.  

The elastic modulus of the core material E is varied within a range of 10 ksi to 

100,000 ksi. As this variation is done, all other variables are kept constant at their basic 

Figure 6.4: Variation of Stiffness with Face Thickness t1 
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parametric values. The stiffness ExIyy rises as E increases. The behavior is seen in Fig. 

6.5, and the equation representing it is shown in Equation 6.6 below: 

2
x yy 1 2 3E I n E n E n= + +  Equation 6.6 

where 1n -0.0023= , 2n 3.1857=  and 3n 79.0153= . 

Equation 6.6 becomes useful in calculating the stiffness ExIyy if a different 

material is used for the flats and flutes of the core. This difference in material brings 

about a change in the material elastic modulus E. However, for the equation to be valid, 

all other parameters, including the core mat thickness, have to remain unchanged from 

the basic parametric values. 

As can be noticed in the graph above (Fig. 6.5), the proposed equivalent 

equation is a very good approximation of the actual configuration model results of the 

finite element analysis. The difference is only about 0.4%.  

Next, the flute-width W is varied within the range of 1 in. to 5 in. with other 

parameters kept constant. As W rises within that range, the flexural stiffness increases. 

It is pertinent to note that this is true for the whole section (not a unit width) since the 

beam width increases with W. In other words, as W increases, the width of the beam 

correspondingly increases to maintain the number of flutes at four. This logically results 

in a stiffer section. Fig. 6.6 and Equation 6.7 below well illustrate this relationship: 

2
x yy 1 2 3E I r W r W r= + +  Equation 6.7 

where 1r 1.1347= , 2r 33.1947=  and 3r 14.8474= . 
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Figure 6.5: Variation of Stiffness with Core Mat Elastic Modulus E 

Figure 6.6: Variation of Stiffness with Flute-Width W 
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This equation (Equation 6.7) is useful in calculating the flexural stiffness ExIyy 

when we have a core with a different flute-width W. To use the formula, however, the 

half-wavelength should not be changed. Also, all other parameters should be unaltered. 

The plots in Fig. 6.6 show that the proposed equivalent equation very well fits the 

results of the actual configuration model from the finite element analysis. There is a 

difference of only about 0.6%. 

Though not as sensitive as flute-width W, the flute half-wavelength L has a 

similar effect on the stiffness. As it is varied from 4 in. to 14 in., ExIyy increases as can 

be observed from Fig. 6.7. The increase in stiffness is understandable when we 

remember that the component stiffness of the flute in the longitudinal direction rises 

correspondingly with flute half-wavelength. The equation below (Equation 6.8) 

represents this trend: 

2
x yy 1 2 3E I s L s L s= + +  Equation 6.8 

where 1s -0.0433= , 2s 2.2435=  and 3s 76.0774= . 

Like the other equations, Equation 6.8 can be used to compute the flexural 

stiffness ExIyy for a panel with a given flute half-wavelength L. Again, all other 

parameters such as the flute-width should be kept at their original basic values. 

It can be observed from Fig. 6.7 that there is a good curve fit of the actual 

configuration model results from finite element analysis by the proposed equivalent 

formula in Equation 6.8. The difference between both plots is only about 0.3%. 
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Finally, the core material thickness t is varied within a range of 0.05 in. to 0.5 in. 

Within this range, the flexural stiffness increases correspondingly (other parameters 

kept constant). Fig. 6.8 shows a plot of this relationship, which can also be represented 

mathematically by the formula (Equation 6.9) below: 

2
x yy 1 2 3E I p t p t p= + +  Equation 6.9 

where 1p 3.0708= , 2p 67.8971=  and 3p 78.437=  

Equation 6.9 is a useful formula in calculating the flexural stiffness ExIyy for a 

sinusoidal wave core panel with any given flat/flute thickness. If, for example, a 

manufacturer or engineer decides to use the same material for the core mat but with an 

increased (or reduced) thickness, the panel stiffness can be computed from the 

simplified formula. We note though that, as in previous equations, all other parameters 

must remain unaltered from their basic parametric values for the equation to be valid. 

Figure 6.7: Variation of Stiffness with Half-Wavelength L 
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As can be noticed from Fig. 6.8, the proposed equivalent equation (Equation 6.9) 

very well approximates the actual configuration model results from the finite element 

analysis. The difference between both sets of data is less that 0.1%. 

6.2.4 Modification Factors 

So far, the formulae that have been derived are single-variable equations. 

Therefore, if more than one parameter is changed from the original basic values, the 

equations are no longer valid. Hence, in this section, a more general formula for the 

flexural stiffness ExIyy in terms of the eight different parameters considered in the 

previous section is sought. Having understood the link between the various parameters, 

a more general equation is now derived, using the same systematic approach that was 

employed in chapter 4. This leads to the concept of modification factors of the 

Figure 6.8: Variation of Stiffness with Flat/Flute Thickness t 
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equivalent stiffness for a variation in parameters. This approach assumes that the 

parameters are independent from each other.  

As discussed previously, one of the most important factors influencing the 

stiffness is the core height. The relationship can be seen in equation 6.2. 

6.2.4.1 Face Longitudinal Elastic Modulus Modification Factor, B1  

From Fig. 6.2, it can be noticed that ExIyy increases with a rise in top face 

longitudinal modulus of elasticity, and this relation is found in equation 6.3. Similarly, by 

plotting the modification factor for Ex1, 1 x yy x yy(basic _ x)B ( E I / E I )=  against the 

ratio 1 x1 x1(basic )R ( E / E )= , the graph shown in Figure 6.9 is obtained. Ex1(basic) 

represents the basic longitudinal modulus of 2,920 ksi and ExIyy(basic_x) is the flexural 

stiffness of the panel at Ex1(basic). Depending on the value of Ex1, the equation can be 

expressed as follows (Equation 6.10): 

4 3 2
1 1 1 2 1 3 1 4 1 5B a R a R a R a R a= + + + +  Equation 6.10 

for x1(0.01 E 5)≤ ≤ , 

1a -0.79488= , 2a 2.7195= , 3a -3.1163= , 4a 1.792=  and 5a 0.39969=  

for x1(5 E 100)≤ ≤ , 

1a =-1.7404E-06 , 2a =1.6251E-04 , 3a -5.6154E - 03= , 4a 9.004E - 02=  and 

5a 1.0997=  

where Ex1 is in Msi. 
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6.2.4.2 Face Lateral Elastic Modulus Modification Factor, B2  

The second modification factor required is that with respect to the elastic 

modulus of the face in the transverse direction Ey1. Notice from Fig. 6.3 that as this 

parameter is varied, the stiffness increases. The lateral elastic modulus modification 

factor is obtained by varying the ratio 2 y1 y1(basic )R ( E / E )=  for the range between 10 ksi 

and 100,000 ksi, where Ey1(basic) is the basic lateral face modulus of 1,870 ksi. By 

plotting this variation with the modification factor 2 x yy x yy(basic _ y)B ( E I / E I )= , the graph in 

Fig. 6.10 is obtained. ExIyy(basic_y) is the flexural stiffness of the panel at Ey1(basic). 

The following equation (Equation 6.11) defines this relationship depending on the value 

of Ey1: 

Figure 6.9: Modification Factor by Face Elastic Modulus (1-direction) 
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4 3 2
2 1 2 2 2 3 2 4 2 5B b R b R b R b R b= + + + +  Equation 6.11 

for y1(0.01 E 5)≤ ≤ , 

1b -0.3358= , 2b 1.5325= , 3b -2.0973= , 4b 1.2038=  and 5b 0.6972=  

for y1(5 E 100)≤ ≤ , 

1b -0.3022E-09= , 2b 4.3335E-06= , 3b -2.2743E-04= , 4b 5.4339E-03=  and 

5b 1.0562=  

where Ey1 is in Msi. 
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6.2.4.3 Face Thickness Modification Factor, B3  

Next, attention is given to the modification factor of the thickness of the top face. 

It can be recalled from Fig. 6.4 that the stiffness of the panel increases with this 

parameter, and the relationship was also shown in Equation 6.5. The modification factor 

Figure 6.10: Modification Factor by Face Elastic Modulus (2-direction) 
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is obtained by varying the thickness ratio 3 1 1(0.43)R ( t / t )=  within a range of thickness of 

0.43 in. to 2.5 in. t1(0.43) represents the basic face thickness of 0.43 in. Plotting 

3 x yy x yy(basic _ t1)B ( E I / E I )=  against R3 yields the graph shown in Figure 6.11. 

ExIyy(basic_t1) is the flexural stiffness of the panel at t1(0.43). This plot has the 

following equation for B3 (Equation 6.12): 

2
3 1 3 2 3 3B c R c R c= + +  Equation 6.12 

where 1c -1.8505E - 02= , 2c 0.3303=  and 3c 0.7046= . 

  

 
6.2.4.4 Core Mat Elastic Modulus Modification Factor, B4  

From Fig. 6.5 and Equation 6.6, it was seen that one of the very important 

parameters of the core is the elastic modulus of its material E. As E increases, so does 

the flexural stiffness. The equation for modification factor of the stiffness due to E is 

Figure 6.11: Modification Factor by Face Thickness 
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sought. This is derived by computing the elastic modulus ratio 4 (1.71)R ( E / E )=  and the 

corresponding modification factor 4 x yy x yy(basic _E)B ( E I / E I )= . E(1.71) is the basic core mat 

elastic modulus of 1,710 ksi, while ExIyy(basic_E) represents the flexural stiffness of the 

panel at E(1.71). Plotting B4 versus R4 produces the graph in Fig. 6.12 and its equation 

is as follows (Equation 6.13): 

2
4 1 4 2 4 3B d R d R d= + +  Equation 6.13 

where 1d -7.8268E-05= , 2d 6.4427E-02=  and 3d 0.9345= . 

 

 
6.2.4.5 Core Flute-Width Modification Factor, B5  

Another very significant parameter of the core is its flute-width W. An increase in 

W results in a rise in the panel stiffness, as shown from Fig. 6.6 and Equation 6.7. 

Similarly, by plotting the modification factor for flute-width, 5 x yy x yy(basic _ W )B ( E I / E I )=  

Figure 6.12: Modification Factor by Core Mat Elastic Modulus 
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against the ratio 5 (2)R ( W / W )= , the graph in Fig. 6.13 results. W(2) represents the basic 

flute-width of 2 in. and ExIyy(basic_W) is the flexural stiffness of the panel when the 

flute-width is 2 in. The equation (Equation 6.14) can be expressed as follows: 

2
5 1 5 2 5 3B k R k R k= + +  Equation 6.14 

where 1k 5.3623E-02= , 2k 0.7844=  and 3k 0.1754= . 

  

 
6.2.4.6 Core Half-Wavelength Modification Factor, B6  

Next, consideration is given to the modification factor of the stiffness due to the 

half-wavelength L. From Fig. 6.7, the stiffness increases with a rise in half-wavelength. 

This can also be seen from Equation 6.8. This same trend is observed from the plot of 

the modification factor 6 x yy x yy(basic _L)B ( E I / E I )=  against the ratio 6 (4)R ( L / L )= . (Fig. 6.14) 

Figure 6.13: Modification Factor by Flute Width 
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Here, L(4) represents the basic half-wavelength of 4 in. and ExIyy(basic_L) is the 

flexural stiffness of the panel when the L is 4 in. The formula is shown in Equation 6.15. 

2
6 1 6 2 6 3B m R m R m= + +  Equation 6.15 

where 1m -8.1937E - 03= , 2m 0.1060=  and 3m 0.8988= . 

  

 
6.2.4.7 Core Material Thickness Modification Factor, B7  

Finally, focus is directed to the modification factor of the stiffness due to the core 

mat thickness t. Flexural stiffness increases with the thickness of the core material, and 

this behavior is found in Fig. 6.8 and Equation 6.9. The thickness ratio 7 (0.0898)R ( t / t )= is 

computed for a range of t between 0.05 in. and 0.5 in. where t0.0898 is the basic 

flat/flute thickness, 0.0898 in. In Fig. 6.15, the modification factor 

7 x yy x yy(basic _ t )B ( E I / E I )= is plotted against R6. ExIyy(basic_t) is the flexural stiffness of the 

Figure 6.14: Modification Factor by Half-Wavelength 
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panel at t0.0898. The expression for the flat/flute thickness modification factor can be 

written as follows: 

2
7 1 7 2 7 3B p R p R p= + +  Equation 6.16 

where 1p 2.9257E - 04= , 2p 7.2037E - 02=  and 3p 0.9267= . 

 

 
6.2.5 Formula for Predicting Flexural Stiffness ExIyy 

Having derived and discussed the interrelationship between panel parameters, 

the following formula is now proposed for calculating the flexural stiffness ExIyy: 

x yy 1 2 3 4 5 6 7 x yy HE I B B B B B B B (E I )=  Equation 6.17 

where B1, B2, B3, B4, B5, B6, B7 and (ExIyy)H can be obtained from Equations 6.2, 

6.10,…, 6.16 

Figure 6.15: Modification Factor by Flat/Flute Thickness 

0 

0.3

0.6

0.9

1.2

1.5

0 1 2 3 4 5 6

R 7

B7 

FEM of Equivalent
FEM of Actual Config.



 150

Though the above equation was derived based on variation of just the top face, 

the same formula can be applied to the two faces of the sandwich structure. New 

modification coefficients are simply introduced to account for the variation in the bottom 

face. These new factors have the same formulae as those of the top face. Thus, the 

modification factors used in Equation 6.17 become: 

i i1 i2B B B=  Equation 6.18 

where Bi1 and Bi2 refer to the modification factors for top and bottom faces respectively 

and i = 1, 2, … 7 

It must also be noted that the equation is valid for a beam with a width equal to 

four times the flute-width. Hence, if the flute-width is 2 in., the width of the beam for the 

computation of ExIyy is 8 in. This was the assumption made in the derivation of the 

formula. 

6.3 Flexural Stiffness EyIxx 

The next property now studied is the flexural stiffness of the panel when 

subjected to bending about the longitudinal axis EyIxx. Although this property is not as 

significant as ExIyy, it still has some contribution to the stiffness of the panel. This effect 

is analyzed by considering a beam with a very high span to depth ratio, just as was 

done in the previous case. The purpose of this approach is to neglect the shear 

contribution of the beam to deflection. 

The same systematic approach is followed by first varying each parameter within 

a reasonable range of values while keeping others constant, each time computing the 

flexural stiffness. The sandwich beam model used for this phase has its span L in the 

lateral direction measuring 15 ft. It has a width of 8 in. in the longitudinal direction and a 
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depth of 5 in. It is cantilevered at one of the lateral ends, and a force Pz of 10,000 Ib is 

applied at its other end causing bending about its longitudinal axis. From the deflection 

results, EyIxx can be calculated using the following formula: 

3
z

y xx
z

P LE I
3

=
δ

 Equation 6.19 

6.3.1 Variation of Stiffness with Core Height, H 

Just as in the case of ExIyy, the core height H is the most sensitive of all the 

parameters. It is varied within the same range of 4.57 in. to 23.57 in., while other 

parameters are kept constant. As can be observed from Fig. 6.16, the stiffness EyIxx 

varies from about 70,000 ksi to almost 1,800,000 ksi within the range of variation of the 

core height. However, as sensitive as this is, a comparison with ExIyy reveals that the 

latter is a more sensitive (and hence, more important) stiffness property of the panel. 

The relationship between EyIxx and H can be expressed by equation 6.20: 

4 3 2
y xx H 1 2 3 4 5(E I ) y H y H y H y H y= + + + +  Equation 6.20 

where 1y 5.0598E-05= , 2y =-4.9089E-03 , 3y 3.2923= , 4y =-1.9895E-02  and 

5y =2.9739E-02 . 

Equation 6.20 becomes very useful when it is intended to compute the flexural 

stiffness EyIxx of an FRP sinusoidal wave core panel for any core height H if all the 

other parameters are kept constant at their basic parametric values. For the No-Name 

Creek Bridge in Russell, Kansas which has a core height of 20.5 in., for example, EyIxx 

would have a value of about 1,350E+6 Ib-in2. 

It is also noticed from Fig. 6.16 that the proposed equivalent stiffness equation as 

a function of core height H predicts accurately the actual configuration model results 
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from the finite element analysis. The difference between both sets of data is only about 

0.05%. 

 

 
6.3.2 Variation of Stiffness with Face Parameters 

This step involves varying the elastic modulus in the lateral direction Ey1 within a 

range of 10 ksi to 100,000 ksi, while keeping other parametric constants at their basic 

values. Observe from Fig. 6.17 an illustration of this variation. It can be noticed that the 

stiffness is more sensitive to this parameter at lower values. As Ey1 increases however, 

the sensitivity decreases. The flexural stiffness can be computed as follows, depending 

on the value of Ey1:  

4 3 2
y xx 1 y1 2 y1 3 y1 4 y1 5E I g E g E g E g E g= + + + +  Equation 6.21 

for y1(0.01 E 5)≤ ≤ , 

Figure 6.16: Variation of Stiffness with Core Height H 
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1g -7.6158= , 2g 62.834= , 3g -1.4832E 02= + , 4g 1.3691E 02= +  and 

5g 12.307=  

for y1(5 E 100)≤ ≤ , 

1g -1.9115E - 06= , 2g 4.8673E - 04= , 3g -4.4595E - 02= , 4g 1.8173=  and 

5g 76.027=  

where Ey1 is in Msi. 

Again, Equation 6.21 becomes valuable when it is desired to compute the 

flexural stiffness EyIxx for any value of elastic modulus Ey1 if all other parameters are 

kept at their original basic values. The proposed equivalent formula in Equation 6.21 

well predicts the actual configuration model finite element results, with a difference of 

only about 0.3%. 

 
Figure 6.17: Variation of Stiffness with Face Elastic Modulus Ey1 
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Similarly, the flexural stiffness is very sensitive to Ex1 at lower values, but has a 

smaller slope at higher values. It is however a less sensitive parameter when compared 

to Ex1. This is because Ey1 is the primary modulus in the lateral direction, while Ex1 is 

secondary. The graph of stiffness against Ex1 (with other parameters kept constant) is 

depicted in Fig. 6.18. Depending on the value of Ex1, the stiffness can be calculated 

from Equation 6.22 below:  

4 3 2
y xx 1 x1 2 x1 3 x1 4 x1 5E I f E f E f E f E f= + + + +  Equation 6.22 

for x1(0.01 E 5)≤ ≤ , 

1f -3.4362E - 02= , 2f 0.6861= , 3f -4.6155= , 4f 14.393=  and 5f 50.114=  

for x1(5 E 100)≤ ≤ , 

1f -9.2781E - 07= , 2f 2.3573E - 04= , 3f -2.1479E - 02= , 4f 0.8592=  and 

5f 67.658=  

where Ex1 is in Msi. 

Equation 6.22 can be used to compute the stiffness EyIxx of the panel for any 

given value of elastic modulus Ex1. 
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A very good fit of the proposed equivalent formula (Equation 6.22) and the actual 

configuration model results from the finite element analysis can be seen from Fig. 6.18. 

The difference between both sets is approximately 0.25%. 

The next parameter is the face thickness t1. As this parameter is varied from 

0.43 in. to 2.5 in. (with other parameters kept constant), the stiffness increases from 

about 68,000 ksi to 135,000 ksi. Fig. 6.19 and Equation 6.23 show this relationship of 

stiffness EyIxx with the face thickness t1. 

2
y xx 1 1 2 1 3E I l t l t l= + +  Equation 6.23 

where 1l -6.7217= , 2l 51.146=  and 3l 48.783= . 

Figure 6.18: Variation of Stiffness with Face Elastic Modulus Ex1 
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If for some reason a need arises for an engineer or manufacturer to change the 

thickness of the top or bottom face without altering other properties of the panel, 

Equation 6.23 could be used to obtain the new stiffness EyIxx. 

 

 
The difference between the proposed equivalent equation and the actual 

configuration model results from finite element analysis is about 1.6%, which is a good 

approximation (Fig. 6.19). 

6.3.3 Variation of Stiffness with Core Parameters 

The core parameters which affect the flexural stiffness EyIxx include core height 

H, elastic modulus of the core mat E, flute-width W, flute half-wavelength L and core 

material thickness t. The relationship with core height has been discussed previously. 

Its equation was developed and shown in Equation 6.20. In this section equations 

relating the stiffness and the other parameters are derived.    

Figure 6.19: Variation of Stiffness with Face Thickness t1 
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The first parameter to be given attention is the elastic modulus of the core 

material E. This parameter is varied within a range of 10 ksi to 100,000 ksi. As observed 

from the results, increasing E also increases the stiffness. EyIxx rises from about 

65,000 ksi to 120,000 ksi. Fig. 6.20 describes this behavior pictorially, which can also be 

seen from Equation 6.24 below: 

2
y xx 1 2 3E I n E n E n= + +  Equation 6.24 

where 1n -1.5034E - 03= , 2n 0.6822=  and 3n 67.022= . 

A different material may be used for the core mat. This would mean that the 

elastic modulus E would change. If this happens, Equation 6.24 becomes handy in 

calculating the new flexural stiffness EyIxx. However, all the other panel parameters 

have to remain unaltered for the equation to be valid. 

From the graphs in Fig. 6.20, it can be observed that the proposed equivalent 

equation (Equation 6.24) very well approximates the actual configuration FEM results. 

The difference is only about 0.3%. 
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Next, the flute-width W is varied within the range of 1 in. to 5 in. keeping other 

parameters constant. As revealed by the results from the analysis, increasing W also 

increases the flexural stiffness EyIxx. This increase is due to the fact that the 

component stiffness of the flute in the lateral direction rises correspondingly with 

increased flute-width. In other words, when W increases, more core material is aligned 

in the lateral direction thus providing more stiffness in that direction. Fig. 6.21 and 

Equation 6.25 below show this relationship: 

2
y xx 1 2 3E I r W r W r= + +  Equation 6.25 

where 1r -0.4755= , 2r 7.679=  and 3r 55.579= . 

Equation 6.25 can be used when there is a need to calculate the flexural stiffness 

EyIxx at any given value of flute width W. All other parameters must remain the same as 

their original basic values. 

Figure 6.20: Variation of Stiffness with Core Mat Elastic Modulus E 
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The proposed equivalent equation (Equation 6.25) fits the actual configuration 

model results from finite element analysis.  The difference is just about 0.5%. 

The flute half-wavelength L has a similar effect on the stiffness. It is varied from 4 

inches to 12 inches, keeping other parameters at their constant basic values. As can be 

noticed from Fig. 6.22, EyIxx increases as L increases. This increase in stiffness is true 

for the entire cross-section of the beam. As L increases, the width of the beam rises 

correspondingly to maintain the number of half-wavelengths at two. Therefore the 

results obtained are always per two half-wavelengths. (This is akin to slab design where 

unit width is used). Since the section increases with L, ExIyy increases also. This can 

also be seen in Equation 6.26. 

Figure 6.21: Variation of Stiffness with Flute-Width W 
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2
y xx 1 2 3E I s L s L s= + +  Equation 6.26 

where 1s 0.1260= , 2s 12.494=  and 3s 16.124= . 

For any given value of L, the flexural stiffness EyIxx can be computed using 

Equation 6.26 provided that the other parameters remain unchanged from their basic 

parametric values. 

 

 
It can be observed from Fig. 6.22 that the proposed equivalent equation 

(Equation 6.26) very well approximates the actual configuration model results from finite 

elements, differing only by about 0.2%. 

Lastly, the core material thickness t is varied from 0.05 in. and 0.5 in. Within this 

range, the flexural stiffness increases correspondingly. This increase is shown in the 

plot in Fig. 6.23, which can also be represented mathematically by the formula below: 

Figure 6.22: Variation of Stiffness with Half-Wavelength L 
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2
y xx 1 2 3E I p t p t p= + +  Equation 6.27 

where 1p 5.3457= , 2p 19.766=  and 3p 66.315= . 

Equation 6.27 can be used to obtain the flexural stiffness EyIxx for any given 

value of core mat thickness. For example, if the same material is used for the core mat 

but a different thickness is needed for some reason. As in previous cases, all other 

parameters must remain unaltered from their original basic values for the equation to be 

valid.  

The difference between the proposed equivalent equation and the actual 

configuration finite element model is about 0.15%. This illustrates that Equation 6.27 

provides a very good curve fit. 

  
Figure 6.23: Variation of Stiffness with Flat/Flute Thickness t 
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6.3.4 Modification Factors 

A more general formula for the flexural stiffness EyIxx in terms of the eight 

different parameters considered in the previous section can now be derived. The same 

systematic approach as was followed for flexural stiffness ExIyy is used. The concept of 

modification factors of the equivalent stiffness for a variation in parameters is employed. 

First of all, it was noticed that one of the most important factors influencing the stiffness 

is the core height. This relationship can be seen in Equation 6.20 and Fig. 6.16.  

6.3.4.1 Face Lateral Elastic Modulus Modification Factor, C1  

Fig. 6.17 and Equation 6.21 showed that EyIxx increases with a rise in top face 

lateral modulus of elasticity. A plot of the modification factor for Ey1, 

1 y xx y xx(basic _ y)C ( E I / E I )=  against the ratio 1 y1 y1(basic )S ( E / E )= , reveals a similar trend. This 

trend can be seen in the graph in Fig. 6.24. The term Ey1(basic) represents the basic 

lateral modulus of 1,870 ksi and EyIxx(basic_y) symbolizes the flexural stiffness of the 

panel at Ey1(basic). The following equation (Equation 6.28) can be used to compute the 

modification factor: 

4 3 2
1 1 1 2 1 3 1 4 1 5C a S a S a S a S a= + + + +  Equation 6.28 

for y1(0.01 E 5)≤ ≤ , 

1a -1.3816= , 2a 6.0956= , 3a -7.6948= , 4a 3.7982=  and 5a 0.1826=  

for x1(5 E 100)≤ ≤ , 

1a =-3.4678E-07 , 2a =4.7219E-05 , 3a =-2.3135E-03 , 4a =5.0415E-02  and 

5a 1.1279=  

where Ey1 is in Msi. 
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6.3.4.2 Face Longitudinal Elastic Modulus Modification Factor, C2  

Next consider is given to the modification factor with respect to the elastic 

modulus of the face in the longitudinal direction Ex1. Notice from Fig. 6.18 (as well as 

Equation 6.22) that as this parameter is varied, the stiffness increases. It was also 

explained that since Ex1 is a secondary modulus in the lateral direction, it is a less 

sensitive parameter compared with Ey1. The modification factor is obtained by varying 

the ratio 2 x1 x1(basic )S ( E / E )=  for the range between 10 ksi and 100,000 ksi (with all other 

parameters kept constant at their basic values), where Ex1(basic) is the basic 

longitudinal face modulus of 2,920 ksi. If the modification factor 2 y xx y xx(basic _ x)C ( E I / E I )=  

is plotted against S2, the graph in Fig. 6.25 is obtained. EyIxx(basic_x) represents the 

flexural stiffness of the panel at Ex1(basic). The following equation (Equation 6.29) 

defines this relationship depending on the value of Ex1: 

Figure 6.24: Modification Factor by Face Elastic Modulus (2-direction) 
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4 3 2
2 1 2 2 2 3 2 4 2 5C b S b S b S b S b= + + + +  Equation 6.29 

for x1(0.01 E 5)≤ ≤ , 

1b -3.7061E - 02= , 2b 0.2534= , 3b -0.5838= , 4b 0.6235=  and 5b 0.7435=  

for x1(5 E 100)≤ ≤ , 

1b -5.0797E-07= , 2b 4.705E-05= , 3b -1.6041E-03= , 4b 0.025097=  and 

5b 1.0448= . 

where Ex1 is in Msi. 

 

 
6.3.4.3 Face Thickness Modification Factor, C3  

The next modification factor considered is that with respect to the thickness of 

the top face. It can be recalled from Fig. 6.19 that the stiffness of the panel increases 

with an increase in face thickness t1. The relationship is also shown in Equation 6.23. 

Figure 6.25: Modification Factor by Face Elastic Modulus (1-direction) 
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The modification factor can now be derived by varying the thickness ratio 

3 1 1(0.43)S ( t / t )=  within a range of thickness of 0.43 in. to 2.5 in., where t1(0.43) 

represents the basic face thickness of 0.43 in. A plot of 3 y xx y xx(basic _ t1)C ( E I / E I )=  against 

S3 yields the graph shown in Fig. 6.26. The flexural stiffness of the panel when t1  is 

0.43 in. is represented by the term EyIxx(basic_t1). This plot has the following equation: 

2
3 1 3 2 3 3C c S c S c= + +  Equation 6.30 

where 1c -1.8196E - 02= , 2c 0.322=  and 3c 0.7142= . 

  

 
6.3.4.4 Core Mat Elastic Modulus Modification Factor, C4  

From Fig. 6.20 and Equation 6.24, the relationship between the modulus of 

elasticity of the core mat and the flexural stiffness was shown. As the elastic modulus E 

increases, so does the flexural stiffness. Derivation of the equation for modification 

factor of the stiffness due to E is of interest. This is performed by computing the elastic 

Figure 6.26: Modification Factor by Face Thickness 
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modulus ratio 4 (1.71)S ( E / E )=  and the corresponding modification factor 

4 y xx y xx(basic _E)C ( E I / E I )=  as E varies from 10 ksi to 100,000 ksi while all the other 

variables are kept constant at their basic parametric values. E(1.71) is the basic core 

mat elastic modulus of 1,710 ksi, while the term EyIxx(basic_E) represents the flexural 

stiffness of the panel at E(1.71). Plotting C4 versus S4 produces the graph in Fig. 6.27 

whose equation is: 

2
4 1 4 2 4 3C d S d S d= + +  Equation 6.31 

where , 2d 1.7096E - 02=  and 3d 0.9822= . 

  

 

Figure 6.27: Modification Factor by Core Mat Elastic Modulus 
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6.3.4.5 Core Flute-Width Modification Factor, C5  

An increase in the flute-width W results in a rise in the panel flexural stiffness 

EyIxx. This can be observed from Figure 6.21 and Equation 6.25. A plot of the 

modification factor for flute-width, 5 y xx y xx(basic _ W )C ( E I / E I )=  against the 

ratio 5 (2)S ( W / W )=  shows a similar behavior. This relationship is seen from the graph in 

Fig. 6.28. W(2) represents the basic flute-width of 2 in. and EyIxx(basic_W) is the 

flexural stiffness of the panel when the flute-width is 2 in. To calculate this modification 

factor, Equation 6.32 can be used: 

2
5 1 5 2 5 3C k S k S k= + +  Equation 6.32 

where 1k -2.7848E - 02= , 2k 0.2249=  and 3k 0.8137= . 

  

 

Figure 6.28: Modification Factor by Flute Width 
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6.3.4.6 Core Half-Wavelength Modification Factor, C6  

Next an equation for the modification factor of the stiffness due to the half-

wavelength L is derived. From Figure 6.22, a rise in half-wavelength results in an 

increase in the stiffness. Equation 6.26 also shows this. By plotting the modification 

factor 6 y xx y xx(basic _L)C ( E I / E I )=  against the ratio, a similar behavior is 

noted. (Fig. 6.29) L(4) represents the basic half-wavelength of 4 in. and EyIxx(basic_L) 

is the flexural stiffness of the panel at L(4). The modification factor C6 can be calculated 

as follows: 

2
6 1 6 2 6 3C m S m S m= + +  Equation 6.33 

2m 0.7317=  and 3m 0.2361= . where, 

  
Figure 6.29: Modification Factor by Half-Wavelength 
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6.3.4.7 Core Material Thickness Modification Factor, C7  

The final modification factor derived is that due to the core mat thickness t. 

Flexural stiffness increases with the thickness of the core material, as shown in Fig. 

6.23 and Equation 6.27. The thickness ratio is computed for a range of 

t from 0.05 inch to 0.5 inch.  t0.0898 is the basic flat/flute thickness of 0.0898 inch In 

Fig. 6.30, the modification factor 7 y xx y xx(basic _ t )C ( E I / E I )= is plotted against S7, where 

ExIyy(basic_t) refers to the flexural stiffness of the panel at t0.0898. The formula for the 

flat/flute thickness modification factor can be expressed as follows: 

2
7 1 7 2 7 3C p S p S p= + +  Equation 6.34 

where 1p 6.3114E - 04= , 2p 2.5988E - 02=  and 3p 0.9709= . 

  

Figure 6.30: Modification Factor by Flat/Flute Thickness 

0 

0.25 

0.5 

0.75 

1 

1.25 

0 1 2 3 4 5 6

S7

C
7

FEM of Equivalent
FEM of Actual Config.

7 (0.0898)S ( t / t )=



 170

6.3.5 Formula for Predicting Flexural Stiffness EyIxx 

The previous sections discussed interrelationship between the various panel 

parameters. With these results, the following equation is now proposed for calculating 

the flexural stiffness EyIxx: 

y xx 1 2 3 4 5 6 7 y xx HE I C C C C C C C (E I )=  Equation 6.35 

where C1, C2, C3, C4, C5, C6, C7 and (EyIxx)H can be obtained from Equations 6.20, 

6.28,…, 6.34 

Like the case of flexural stiffness in the longitudinal direction ExIyy, it can be 

noticed here that Equation 6.35 is derived based on the variation of just the top face. 

However, the same formula can be applied to the two faces of the sandwich structure. 

The same assumption as was done previously is made. That is, introducing new 

modification coefficients which take into account the variation in the bottom face. The 

new factors have the same formulae as those of the top face. The modification factors 

in Equation 6.35 can thus be modified as follows: 

i i1 i2C C C=  Equation 6.36 

where Ci1 and Ci2 refer to the modification factors for top and bottom faces respectively 

and i = 1, 2, …, 7. 

It is pertinent to note that the equation is valid for a beam with a width equal to 

twice the half-wavelength. Hence, if the half-wavelength is 4 inches, the width of the 

beam for the computation of EyIxx is 8 inches. This was the assumption made in the 

derivation of the formula. 



 171

6.4 Equivalent Shear Stiffness GxyAs 

It was discussed previously that the shear contribution to deflection is sometimes 

ignored in structural analysis, because for long beams this contribution is not significant. 

For deep beams, however, the shear contribution has to be included in the traditional 

beam deflection equation, because it can become a major factor in the structure’s 

behavior. 

In this section, parametric studies are performed with the objective of deriving an 

equation for the shear stiffness of the sinusoidal sandwich beam. Even in cases where 

the shear contribution can be ignored, we sometimes need to input its value for analysis 

purposes. The proposed equation can therefore be helpful in those cases also. 

Just as was mentioned previously, the approach employed to derive the shear 

stiffness considers the fact that the total deflection of the beam model is a summation of 

both the bending and shear deflections. This is illustrated by Equation 6.37 below for a 

cantilever beam of span L, flexural stiffness EI, shear stiffness GA and with a point load 

P at its free end: 

3

s

PL PL
3EI GA

Δ = +  Equation 6.37 

The beam for this study is modeled as a cantilever with span L. The nodes on 

one of its ends are fixed for all degrees of freedom. At the other end, the nodes are kept 

free, and a point load Py is applied in the lateral direction. This causes bending in the 

lateral direction (y) about the vertical axis (z), and shear of the longitudinal-lateral (x-y) 

plane. The shear modulus Gxy (= Gyx) can be calculated from the total deflection using 

the following formula: 



 172

y
xy s 3

y y x zz

P L
G A

( - (P L 3E I ))
=

δ
 Equation 6.38 

The flexural stiffness ExIzz is computed from ExIyy in Equation 6.17 and the 

given cross-section using the following relation: 

zz
x zz x yy

yy

IE I E I
I

=  Equation 6.39 

The method employed to develop the shear stiffness equations is the same 

systematic approach that has been used in this work, where the concept of modification 

factors come to play. First though, the stiffness equations as a function of individual 

variables are derived. 

6.4.1 Variation with Parameters  

The elastic modulus in the longitudinal direction Ex1 is first varied within a range 

of 1,000 ksi to 100,000 ksi, keeping other parameters constant. With each change in 

this parameter, GxyAs is computed using Equations 6.38 and 6.39. To obtain ExIyy, 

Equation 6.3 is used. The shear stiffness increases rapidly within lower values of Ex1, 

but this increase has a smaller rate as the elastic modulus increases. The relationship 

between the shear stiffness and elastic modulus can be seen from the results plotted in 

Fig. 6.31. It can also be expressed by the equation below: 

n
xy s E _ x1 x1(G A ) aE=  Equation 6.40 

where a 4.9321E 04= + , n 0.1933=  and Ex1 is in psi. 
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As can be observed from Fig. 6.31, the proposed equivalent formula in Equation 

6.40 well predicts the actual configuration model results from the finite element analysis. 

The difference between both sets of data is only about 3%. 

Next, the shear modulus of the top face Gxy1 is varied from 500 ksi to 10,000 

ksi. The stiffness rises following the same trend as the case of Ex1. Equations 6.38 and 

6.39 are used to compute GxyAs. To obtain ExIyy for the variation of Gxy1, the 

Equation 6.41 below is used.  

v
x yy xy1E I wG=  Equation 6.41 

where w 4.8306E 07= + , v 4.8236E - 02= and Gxy1 is in psi. 

Equation 6.41 was developed during the parametric studies of flexural stiffness 

ExIyy. However, because Gxy1 is not a significant contributing factor to flexural stiffness 

ExIyy, Equation 6.41 is not incorporated in Equation 6.17 developed previously, and 

Figure 6.31: Variation of Stiffness with Face Elastic Modulus Ex1 
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nothing has been mentioned about it thus far. It is discussed in this section since its 

influence on the shear stiffness is important. 

From the results of shear stiffness obtained by varying Gxy1, the plot in Fig. 6.32 

is produced. The equation of this plot is shown below: 

m
xy s xy1G A   kG=  Equation 6.42 

where k 2.4995E 05= + , m 8.7095E - 02=  and Gxy1 is in psi. 

The plots in Fig. 6.32 show that Equation 6.42 proposed for the equivalent shear 

stiffness as a function of the face shear modulus Gxy1 well predicts the actual 

configuration finite element model results. The difference between both data sets is 

approximately 1.6%. 

 

 

Figure 6.32: Variation of Stiffness with Face Shear Modulus Gxy1 
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The third parameter considered is the top face thickness t1. This parameter is 

varied from 0.43 in. to 2.5 in. while other parameters are kept constant at their basic 

parametric values. It can be observe from the plot in Fig. 6.33 that the shear stiffness 

increases with the face thickness, and this parameter is the most sensitive of all. The 

shear stiffness GxyAs for each thickness value is computed using Equation 6.38. 

Equations 6.5 and 6.39 are used to compute the needed flexural stiffness. 

The relationship between the shear stiffness GxyAs and the face thickness t1 is 

shown by the following formula: 

xy s 1G A r st= +  Equation 6.43 

where r 5.5314E 05= + , s 1.0295E 06= +  and t1 is in inches. 

 

 

Figure 6.33: Variation of Stiffness with Face Thickness t1 
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Again, the proposed equation for equivalent shear stiffness in terms of face 

thickness (Equation 6.43) very well predicts the actual configuration finite element 

model results obtained from the analysis. This good curve fit can be noticed from Fig. 

6.33. The difference between the proposed and the actual data sets is only about 3%. 

Finally, the relationship between the shear stiffness and the core height is 

studied. The core height H is varied between 4.57 in. and 19.57 in. Using the same 

approach as in the previous parameters, the shear stiffness GxyAs is computed using 

Equation 6.38. The flexural stiffness ExIzz is first calculated from Equations 6.2 and 

6.39. As the core height increases, so does the shear stiffness. This is seen in Fig. 6.34 

and the equation below. 

p
xy sG A qH=  Equation 6.44 

where q 3.3137E 05= + , p 0.5760=  and H is in inches. 

  

Figure 6.34: Variation of Stiffness with Core Height H 
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Equations 6.40, 6.42, 6.43 and 6.44 could be used to compute the shear stiffness 

GxyAs of the FRP sinusoidal wave core sandwich panel when only one of its 

parameters is changed from the original basic value. If, for example, the thickness of the 

top face is changed for some reason and all the other parameters are unaltered from 

their basic values, Equation 6.43 could be used to calculate GxyAs. 

6.4.2 Modification Factors 

To derive a formula for the shear stiffness in terms of the four parameters 

discussed in the previous section, the same systematic approach that was used for the 

flexural stiffnesses ExIyy and EyIxx is followed. Modification factors of the stiffness in 

terms of the individual parameters are first sought, and then the general formula as a 

function of these factors is derived. 

As was discussed previously, one of the important parameters influencing the 

shear stiffness is the elastic modulus of the face in the longitudinal direction. The 

relationship was derived and shown in Equation 6.40. This equation forms the base of 

the proposed general formula. 

6.4.2.1 Face Shear Modulus Modification Factor, D1 

The first modification factor derived is that relating to the shear modulus of the 

face Gxy1. It was shown that the beam equivalent shear stiffness increases with the 

face shear modulus. The equation derived to show that relationship can be seen in 

Equation 6.42. The plot in Fig. 6.32 also illustrates this trend. To obtain the equation for 

modification factor by this parameter, the shear modulus ratio 1 xy1 xy1(0.546)T ( G / G )=  is 

calculated for a range of Gxy1 of 500 ksi to 10,000 ksi. The modification factor 

1 xy s xy s(basic _ G)D ( G A / G A )=  is then plotted against T1, and this is shown in Fig. 6.35. The 
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terms Gxy1(0.546) and GxyAs(basic_G) represent the basic face shear modulus of 546 

ksi and the corresponding equivalent shear stiffness respectively. The plot in Fig. 6.35 

can also be expressed by the following equation: 

m
1 1D bT=  Equation 6.45 

where b 1.0250=  and m 8.7095E - 02= . 

6.4.2.2 Face Thickness Modification Factor, D2 

Next, the thickness ratio 2 1 1(0.43)T ( t / t )=  is varied within a range of thickness of 

0.43 in. to 2.5 in. The modification factor by face thickness is obtained by computing the 

ratio 2 xy s xy s(basic _ t1)D ( G A / G A )= for each thickness ratio value. The term t1(0.43) refers to 

the basic face thickness value of 0.43 in., while GxyAs(basic_t1) is the equivalent shear 

stiffness at t1(0.43). It can be recalled from Equation 6.43 and Fig. 6.33 that the face 

thickness is the most sensitive of all the parameters. There is a linear increase in the 

stiffness as t1 rises. A plot of D2 against T2 as shown in Fig. 6.36 reveals the same 

linear relationship. Mathematically, it can be written as follows: 

2 2D c dT= +  Equation 6.46 

where c 0.5954=  and d 0.4765= . 
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Figure 6.35: Modification Factor by Face Shear Modulus 

Figure 6.36: Modification Factor by Face Thickness 
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6.4.2.3 Core Height Modification Factor, D3 

Finally, the modification factor by core height is derived. From Equation 6.44 and 

Fig. 6.34, it can be observed that increasing the depth of the core results in a 

corresponding increase in the equivalent shear stiffness. To derive the equation for the 

modification factor, the thickness of the core is varied within a range of 4.57 in. to 19.57 

in., and the ratio 3 (4.57)T ( H / H )=  is computed for each variation. Each corresponding 

stiffness ratio 3 xy s xy s(basic _H)D ( G A / G A )=  is also computed, and D3 is plotted against T3. 

The resulting plot is shown in Fig. 6.37. H(4.57) is the basic core height of 4.57 in., and 

GxyAs(basic_H) represents the equivalent shear stiffness when H is 4.57 in. The core 

height modification factor can thus be calculated using the formula: 

p
3 3D zT=  Equation 6.47 

where z 0.9271=  and p 0.5760= . 

  
Figure 6.37: Modification Factor by Core Height 
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6.4.3 Formula for Predicting Shear Stiffness GxyAs 

Having studied the inter-relationship between the four different parameters for 

equivalent shear stiffness using the systematic approach above, they can all be put 

together into a general equation of the following proposed form (Equation 6.48): 

xy s 1 2 3 xy s E _ x1G A D D D (G A )=  Equation 6.48 

where D1, D2, D3 and (GxyAs)E_x1 can be obtained from Equations 6.40, 6.45,…, 6.47 

6.5 Application of Stiffness Properties to Deck Model 

The stiffness properties derived were based on a beam model. However, since 

decks can be viewed as a combination of several beams, the stiffness properties just 

derived could be extended to decks. Decks are sometimes designed as beams with a 

certain width such as a unit. The design results are then extended to the entire deck. In 

the derivations we have made so far, the analyses were performed using a beam with 

width equal to 4 flute-widths (for stiffness in longitudinal direction), or 2 half-wavelengths 

(for stiffness in lateral direction). Hence, the equivalent stiffness properties of a 

sinusoidal-wave core sandwich deck system will consider a representative beam cross-

section with the same width just described. In other words, instead of talking about 

stiffness per unit width, we will be dealing with stiffness per 4-flute-width or per 2-half-

wavelength. 

In deriving the stiffness equations, one parameter is varied and all others are 

kept constant. With the assumption that these parameters are independent from each 

other, a systematic approach was followed to derive modification factors. These 

individual equations can be seen in the previous section. As expected with any curve 

fitting approach, the equations do not perfectly fit the data. However, the deviation and 



 182

variation in each of these equations are acceptably small. For instance, talking about 

the most important stiffness property, the flexural stiffness in the longitudinal direction 

ExIyy, the average difference between the derived equation and actual data for all data 

sets of core height H was approximately 0.13%. For modification factor by elastic 

modulus of top face in longitudinal direction, it was about 0.24%. Tables 6.4 to 6.6 

below summarize these differences for the three stiffness properties. The differences in 

Table 6.4 were calculated based on the data and graphs in Figs. 6.1 to 6.8. Table 6.5 

was derived from Figs. 6.16 to 6.23. And the results in Table 6.6 were computed from 

Figs. 6.31 to 6.34. 

The question that arises is: What happens when these individual equations are 

combined to yield the general stiffness formulae in Equations 6.17, 6.35 and 6.48? How 

accurate will the results be? To prove that a high level of accuracy will still exist, two 

phases of verification are carried out. 

Parameter Average % diff. 
H 0.13 

Ex1 0.24 
Ey1 0.36 
t1 1.46 
E 0.39 
W 0.66 
L 0.28 
t 0.09 

 
 

 

 

Table 6.4: Average difference between equation and actual data for Flexural Stiffness ExIyy 
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Parameter Average % diff. 
H 0.05 

Ex1 0.14 
Ey1 0.31 
t1 1.62 
E 0.31 
W 0.53 
L 0.21 
t 0.16 

 

Parameter Average % diff. 
H 6.54 

Ex1 3.26 
Gxy1 1.62 

t1 3.27 
 

6.5.1 Verification Phases 

6.5.1.1 Phase I 

In this phase, we investigate if the basic parameters used in the derivation 

maintain an acceptable level of accuracy. This is necessary because if the equations 

don’t hold true for these basic parameters, they would certainly not work for others.  

The model used in this verification is a simply-supported deck with the 

dimensions 15 ft x 7.75 ft x 5 in. A load of 5 kips is applied at the mid-span as pressure 

on elements measuring 8 in. x 12 in. A comparison of the actual sinusoidal wave-core 

sandwich deck with its equivalent derived from the proposed equations is sought. The 

values of the parameters for the actual model are shown in Table 6.3. 

Table 6.5: Average difference between equation and actual data for Flexural Stiffness EyIxx 

Table 6.6: Average difference between equation and actual data for Flexural Stiffness GxyAs 
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With these parameters, the flexural and shear stiffness values are computed 

using Equations 6.17, 6.35 and 6.48. It should also be noted that the stiffnesses 

calculated from those equations are not per unit width, but per 4-flute-width or per 2-

half-wavelength. Thus the moment of inertia (Iyy or Ixx), or shear area (As) is calculated 

based on the width of this given cross-section. The equivalent panel elastic modulus in 

the longitudinal and lateral directions (Ex and Ey), as well as the equivalent shear 

modulus (Gxy) can then be evaluated. These properties are shown in Table 6.7. These 

are used as inputs in a simple model of single layered shell elements with the same 

dimensions and loading conditions. A first-order finite element analysis is performed, 

and the deflection results recorded as can be observed from Table 6.8. The comparison 

is done for both the longitudinal and lateral directions. Table 6.8 also shows the FEM 

results of the actual sandwich model. 

ExIyy (Ib-in2) 8.6557E+07 

EyIxx (Ib-in2) 6.9774E+07 

GxyAs (Ib-in2) 8.9317E+05 
Ex (psi) 1.0387E+06 
Ey (psi) 8.3729E+05 
Gxy (psi) 2.6795E+04 

Distance (in.) 0 22 45 67 90 
Actual Config FEM 0 0.4205 0.8070 1.0778 1.2016 

Equivalent FEM (Equation) 0 0.4315 0.8276 1.1023 1.2182 
% Diff.   2.5356 2.4796 2.2226 1.3627 

 
 

Table 6.7: Equivalent stiffness values and corresponding moduli 

Table 6.8a: Comparison of deflection results. Points in the longitudinal direction along 
the central line. 
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Distance (in.) 0 23 46 69 92 
Actual Config. FEM 1.2191 1.1798 1.2016 1.1801 1.2196 

Equivalent FEM (Equation) 1.2369 1.2093 1.2182 1.2093 1.2369 
% Diff. 1.4391 2.4394 1.3627 2.4146 1.3987 

 
A closer look at the two sets of results reveals a very good comparison. The 

difference between the maximum deflection values of both models is about 1.4%. 

Therefore, we can conclude that the proposed equations work satisfactorily well for the 

basic model. 

6.5.1.2 Phase II 

Here the stiffness equations are verified by considering a sandwich panel whose 

properties all differ from those of the basic model. The approach is the same as in 

Phase I. The verification model has the following properties: 

Span (ft.) 18 
Width (ft.) 12 
Depth (in.) 9 

 
To simulate conditions similar to practical situations, the loading used is the 

design tandem in LRFD. The deck is loaded with just one axle of the tandem placed at 

midspan for the worst deflection condition. The wheel of each axle 12.5 kips, and 

spaced at 6 ft. The wheel load is distributed over elements within an area 15 in. x 16 in. 

Fig. 6.38 shows the ANSYS model with the wheel loads applied on elements. Only half 

the deck is modeled using symmetric conditions. The boundary conditions used to 

simulate symmetry can be seen in Fig. 6.39. The parameters for the actual sinusoidal 

wave-core sandwich deck are displayed in Table 6.10. 

Table 6.8b: Comparison of deflection results. Points in the lateral direction along the 
midspan 

Table 6.9: Panel properties 
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Properties Values 

Ex1 and Ex2 (psi) 1.50E+06 
Ey1 and Ey2 (psi) 1.20E+06 

t1 and t2 (in.) 0.5 
Gxy1 (psi) 2.00E+05 

E (psi) 5.00E+05 
L (in.) 6 
W (in.) 4 
H (in.) 8.5 
t (in.) 0.1 

 
With the sandwich parameters the equivalent flexural and shear stiffness values 

for the deck can be calculated as was done in the previous example from Equations 

6.17, 6.35 and 6.48. From these the elastic and shear moduli of the equivalent structure 

are evaluated. Table 6.11 summarizes these properties. The equivalent structure 

modeled by ANSYS can be observed in Figs. 6.40 and 6.41, which show the loading 

and boundary conditions. 

ExIyy (Ib-in2) 4.00E+08 

EyIxx (Ib-in2) 2.57E+08 

GxyAs (Ib-in2) 1.10E+06 
Ex (psi) 4.12E+05 
Ey (psi) 3.53E+05 
Gxy (psi) 9.19E+03 

 

Table 6.10: Sandwich parameters 

Table 6.11: Equivalent stiffness values and corresponding moduli 
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Figure 6.38: Model of actual FRP sinusoidal core panel – Phase II loading 

Figure 6.39: Model of actual FRP sinusoidal core panel – Phase II boundary conditions 
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Figure 6.40: Model of equivalent FRP panel – Phase II loading 

Figure 6.41: Model of equivalent FRP panel – Phase II boundary conditions 
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A first-order finite element analysis is carried out for both models – the actual and 

the equivalent – and the deflection results are noted. These results are summarized for 

various locations in the longitudinal and lateral directions of the panel. (Table 6.12) Figs. 

6.42 and 6.43 show the vertical deflection contours for the actual configuration and the 

equivalent models respectively. 

x Actual Config. FEM Equivalent FEM (Equation) % diff. 
0 0 0   
18 0.76301 0.7062 7.4455 
36 1.4822 1.3507 8.8719 
54 2.1113 1.9504 7.6209 
72 2.6036 2.4033 7.6932 
90 2.9165 2.6917 7.7079 

108 3.0232 2.7907 7.6905 
 

y Actual Config. FEM 
Equivalent FEM 

(Equation) % diff. 
0 3.4883 3.1563 9.5175 
36 3.1458 2.8877 8.2046 
72 3.0232 2.7907 7.6905 

108 3.1478 2.8877 8.2629 
144 3.4907 3.1563 9.5797 

 

 

 

Table 6.12a: Comparison of deflection results (in.). Points in the longitudinal direction 
along the central line (in.) 

Table 6.12b: Comparison of deflection results (in.). Points in the lateral direction along 
the midspan (in.) 
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Figure 6.42: Deflection contour of actual FRP sinusoidal core panel 

Figure 6.43: Deflection contour of equivalent FRP panel 
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A very good comparison (considering the complexity of the sandwiched deck) 

can be noted between the sets of results shown in Table 6.12. The average difference 

in deflections between the actual and equivalent models is approximately 8%. Visual 

observation of Figs. 6.42 and 6.43 shows comparable results for both models.  

Thus, we can say that the proposed equations work well for this model. They can 

therefore be used with a high degree of confidence in obtaining simplified single-layer 

equivalent properties of the complex FRP sinusoidal wave core sandwich panel. 
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CHAPTER 7 -  STRUCTURAL ANALYSIS WITH WEARING 

SURFACE 

7.1 Introduction 

Usually in structural design of bridges, the wearing surface is not considered a 

structural component. It is taken into account only during the computation of the dead 

loads. In the AASHTO LRFD code, for instance, the uncertainty of the presence of the 

wearing surface during the life of the bridge is accounted for by means of maximum and 

minimum load factors (Barker and Pucket 1997). This is understandable when we 

remember that the life of the wearing surface is much less than the structural deck itself. 

The life span of a thin wearing surface (usually less than 1 in. thick) for example, over 

an orthotropic steel deck and consisting of a layer of adhesive/cement matrix is usually 

less than 5 years (Hulsey et al. 2002). Latex modified concrete overlays theoretically 

have a useful life of approximately 20 years. Thin polymer overlays have an anticipated 

life of 20 years or greater (Calvo and Meyers 1991). Mastic asphalt (a mixture of asphalt 

cement, filler and coarse aggregate) has a life expectancy of 25 years (Hicks et al. 

2000). 

To achieve the benefits of serviceability and high performance of the wearing 

surface, the following requirements have to be met (Hicks et al. 2000): 

7.1.1 Bond 

Good bonding will ensure that the wearing surface acts compositely with the 

deck. It will also prevent delamination, especially when the structure experiences large 

deflections. These large deflections cause high interlaminar stresses which can result in 

the wearing surface breaking apart or separating from the deck if the bond is weak. 
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7.1.2 Durability 

A bridge is designed for different types of loads and conditions. The wearing 

surface must also be able to withstand traffic loads as well as other harsh environmental 

conditions without rutting, shoving or wearing. 

7.1.3 Fatigue Strength and Flexibility 

The wearing surface must have sufficient fatigue strength and flexibility to 

prevent cracks under different loading conditions. This is important not only for long life 

but also for maintaining the water-proofing ability of the overlay. 

7.1.4 Weight 

The bridge designer should ensure that the wearing surface has as minimum a 

weight as possible compared to the deck itself. This is done by proper selection of 

overlay materials and thickness. 

7.1.5 Rideability 

The wearing surface should also be very smooth to ride on which makes for the 

comfort of road users. 

7.2 Stiffness Contribution of Wearing Surface 

The contribution of wearing surface to the stiffness of the deck is now examined. 

This contribution is usually ignored in practice since the overlay is not usually 

considered as a structural component of the deck and its contribution to the overall 

stiffness of concrete deck is relatively small. If this contribution is relatively significant 

however, such as in the case of FRP deck, it can be utilized in a typical bridge design.  

In this study, it is assumed that the requirements for optimum wearing surface 

performance as discussed previously have been met. In particular, it is assumed that 
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the bond between the wearing surface and the deck is adequately strong so that there 

is no delamination, and that the overlay material is durable to prevent wear. A method 

for computing the stiffness contribution of the overlay is sought and verified. 

7.3 Finite Element Modeling 

It was shown in Chapters 5 and 6 that the complicated sinusoidal wave core 

sandwich panel can be accurately modeled as a single layered structure with equivalent 

properties which were derived. Since the focus in this section is on stiffness 

contribution, the model used here is the stiffness-based single-layered equivalent of the 

FRP sinusoidal wave-core sandwich beam. The equivalent model is used instead of the 

actual model because as was discussed, it is much less complicated but gives 

approximately the same stiffness results. To model the additional layer of wearing 

surface, structural layered shell elements are used. A two-layered beam model is 

created with the bottom layer representing the equivalent deck and the top the wearing 

surface. 

The beam used has the same configuration and material properties as those of 

the panel manufactured by Kansas Structural Composites Inc., which has been the 

basis of this research work. These parametric values can be seen in Table 6.3 of 

Chapter 6. The span of the beam is 15 ft, the width is 8 in. and the depth is 5 in. The 

single-layered equivalent properties for this structure were derived in Chapter 5 and 

shown in Table 5.1. 

In testing for the stiffness contribution of the wearing surface material, two 

independent variables are identified and noted. These are the elastic modulus and 
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thickness of the overlay material. They are designated as Ews and tws respectively. 

These parameters are varied, and the beam stiffness computed. 

To obtain the flexural stiffness, the beam is modeled as a cantilever of span L 

and subjected to a point load P at the free end which causes bending. As was 

discussed in Chapter 5, the shear contribution to deflection can be ignored because it is 

insignificant for long beams. The stiffness EI can be computed from the deflection 

results δ  using the formula in Equation 7.1 below: 

3PLEI
3

=
δ

 Equation 7.1 

The stiffness obtained with each variation of Ews and tws is compared with that 

when the beam has no wearing surface (Table 5.1) to investigate how much 

contribution the overlay provides. 

The wearing surface Young’s modulus Ews is varied within the range of 250 ksi 

to 5,000 ksi, and the thickness tws from 0.25 in. to 2 in. Fig. 7.1 well illustrates the 

stiffness contribution of the wearing surface to the entire structure. It shows a plot of F 

(representing the ratio of beam stiffness with overlay to that without overlay) against 

Ews for the different values of tws.  

As can be observed from the graph, the wearing surface can contribute quite 

significantly to the stiffness of the structure. Consider a practical case of the 

polysulphide epoxy overlay, for example, to illustrate this. Typical values for the elastic 

modulus and thickness are 2.75 GPa (400 ksi) and 0.375 in. respectively (Stenko and 

Chawalwala 2001). An interpolation from Fig. 7.1 shows that the stiffness of the beam 

taking into consideration the wearing surface is about 15% more than when the wearing 

surface is not accounted for. This contribution could be taken advantage of in the design 
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of the structure. However, it must be borne in mind that very high values of Young’s 

modulus (such as 5,000 ksi) for wearing surface on FRP decks are not realistic. 

It is pertinent to note, however, that the analysis just performed holds true under 

ideal conditions. These include the assumption that there is perfect bonding between 

the wearing surface material and top face laminate. Also implied is that durability 

conditions are met and therefore no wear nor degradation of the overlay material exists. 

  

Figure 7.1: Stiffness contribution of wearing surface 
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7.4 Derivation of Stiffness 

Apart from deriving the stiffness using the finite element approach described in 

the previous section, two other methods are now proposed and tested against the finite 

element results obtained. These methods involve using traditional beam analysis 

approach. They differ in the way the stiffness of the core is calculated and are 

discussed in the foregoing sections. 

7.4.1 Hand Calculation Based on Equivalent Beam – Method 1 

In this first method, the stiffness of the beam is computed for a two-layered 

structure, the top representing the wearing surface and the bottom, the equivalent 

structural beam developed in Chapter 5. It is noted that the two materials are dissimilar. 

Hence, the analysis starts with obtaining a transformed section. Fig. 7.2 below 

illustrates this process of transforming the section to the same material. This is done by 

transforming the overlay material to an equivalent beam material using the modular 

ratio, m (=Ews/Ebeam). 

 

 

 

 

 

 

 

 

Figure 7.2: Transformation of two-layered section 
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With the transformed section in Fig.7.2b, the distance from the top fibers of the 

cross-section to the centroidal axis y  can be computed using the formula in Equation 

7.2: 

n n

ii i
i 1 i 1

y A y A
= =

= ∑ ∑  Equation 7.2 

where Ai and iy symbolize the area and centroid of each layer of a given section. For 

the section in Fig. 7.2, the above equation (Equation 7.2) reduces to the form: 

( )
2 2

ws ws

ws

H mt 2Hty
2 H mt
+ +

=
+

 Equation 7.3 

Having found the location of the centroid, the total stiffness of the section can be 

obtained by a superposition of the stiffness values of individual layers. Thus, 

( ) ( ) ( )total beam ws
EI EI EI= +  Equation 7.4 

(EI)beam and (EI)ws are evaluated using the parallel axis theorem for moment of 

inertia I, noting the position of the centroid. The theorem states that the moment of 

inertia of an area about any axis I is equal to the moment of inertia of the same area 

about a parallel axis passing through the area’s centroid I0, added to the product of the 

same area and the square of the distance between the two axes. This can be stated 

mathematically as follows: 

2
0I I Ay= +  Equation 7.5 

Therefore, the flexural stiffness of the beam can be calculated by the following 

equation: 

( )
22

beam wsbeam

H HEI E bH t y
12 2
⎛ ⎞⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 Equation 7.6 
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Following the same procedure, the stiffness for the wearing surface can also be 

computed using the section in Fig. 7.2. This can be expressed thus: 

( )
22

ws ws
ws wsws

t tEI E t b y
12 2

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 Equation 7.7 

7.4.3 Hand Calculation Based on Simplified Actual Beam Configuration – 

Method 2 

In this second technique, the flexural stiffness is computed for the actual 

sinusoidal wave core sandwich beam at a section where the flats and flutes are equally 

spaced. It must be noted however that this is an approximate method which does not 

take full account of the actual core geometry. Implicit in this approach is the assumption 

that the core constituents (the flats and flutes) are simply parallel components along the 

span of the beam instead of the sinusoidal wave configuration.  

The section is made up of three dissimilar materials – the face, core mat and 

wearing surface. Therefore, just as was done in Section 7.4.1 (method 1), the analysis 

commences with obtaining a transformed section. This transformed section is in the 

form of an I-beam as shown in Fig. 7.3. In the figure, t represents the summation of the 

thickness of all flats and flutes of the actual section. 
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Equation 7.2 is used to compute the location of the centroid of the tansformed 

section in Fig 7.3b. The equation becomes: 

( )( )
( )
1 2 4 31 w 1 2 c

1 w 1 2 c

b m t y t y y m tH y
y

b m t 2t m tH

+ + +
=

+ +
 Equation 7.8 

where 1y , 2y , 3y  and 4y represent the distance from the top fibers of the section to the 

centroid of the wearing surface, top face, core and bottom face, respectively. The 

wearing surface and core are transformed into the same material used for the 

top/bottom face using the modification factors m1 (=Ews/Etop_face) and m2 

(=Ecore/Etop_face). 

With the centroid of the section calculated, the total stiffness of the section 

(EI)total is obtained using the same superposition technique shown in Equation 7.4 in 

conjunction with the parallel axis theorem presented in Equation 7.5. 

Figure 7.3: Transformation of sinusoidal wave core sandwich section 
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7.5 Method Verification 

The two classical beam methods just discussed in the previous section are now 

compared with the finite element analysis procedure described in Section 7.3. The 

objective here is to investigate which approach provides a better approximation of the 

results from finite elements. To perform this task, the properties of the wearing surface 

are varied within certain ranges. For each property set, the flexural stiffness is 

computed for the entire structure using methods 1 and 2 in Section 7.4. The results are 

then compared with those from finite element analysis of corresponding property sets. 

As has been explained, the two important properties of the wearing surface 

having significant effect on the stiffness are the Young’s modulus Ews and the thickness 

tws. The Young’s modulus is varied within the range of 250 ksi to 5,000 ksi, and the 

thickness from 0.25 in. to 2 in. Figs. 7.4 to 7.8 show the variation of the structure’s 

flexural stiffness EI with wearing surface elastic modulus Ews at varying overlay 

thickness tws. The figures also show how the two traditional analysis methods compare 

with the finite element approach. It can also be observed that logically in each of the 

three cases, EI increases with both Ews and tws.  
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Figure 7.4: Variation of EI with Ews at tws = 0.25 in. 

Figure 7.5: Variation of EI with Ews at tws = 0.5 in. 
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Figure 7.6: Variation of EI with Ews at tws = 0.75 in. 

Figure 7.7: Variation of EI with Ews at tws = 1.0 in. 
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It can be observed from all five graphs above (Figs. 7.4 to 7.8) that the hand 

calculation with equivalent beam method (Section 7.4.1) has consistently very good 

matched with the finite element method. The average difference between both plots in 

each of the five graphs is about 0.5%, an excellent approximation. The significance of 

this is that with the approach described in Section 7.4.1 (method 1), the stiffness 

properties of the beam with a layer of wearing surface can be computed with a high 

level of confidence. The results predicted from finite element analysis will be pretty 

much the same. As has been seen, the beam equivalent properties will first have to be 

derived from the approach and equations discussed in Chapters 5 and 6. 

On the other hand, Figs. 7.4 – 7.8 show that the hand calculation with simplified 

actual beam configuration approach (Section 7.4.2) does not fit the finite element results 

Figure 7.8: Variation of EI with Ews at tws = 2.0 in. 
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as well. The maximum difference between both plots is about 20%. This relatively large 

difference is easy to comprehend when note is taken of the assumptions made in this 

approach. It was assumed that the core is made up of parallel web elements running 

along the longitudinal axis of the beam, instead of the actual sinusoidal wave core 

pattern. This assumption simplifies the calculations tremendously, but introduces the 

deviation from the finite element analysis. Although this method does not produce as 

accurate results as does method 1, it can be used for preliminary design or as a check 

for stiffness calculations. Since there is no need for a computation of equivalent beam 

stiffness properties following the approach in Chapters 5 and 6, the method is less 

demanding. 
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CHAPTER 8 -  THERMAL ANALYSIS 

8.1 Introduction 

So far in this research work, the results obtained pertain only to a structure at the 

“stress free” temperature, which is the temperature at which the structure is assumed to 

be free of stress when no load is applied. In real-life situations however, changes in 

temperature of the structure are commonplace during manufacturing, construction and 

service life. These changes can cause high stresses which could have very significant 

effects on FRP materials. Therefore in this chapter, a thermal study is carried out to 

investigate the level of stress at the interface between the top face and the core of the 

sinusoidal wave core sandwich panel. This location is selected for the study because 

one of the main causes of failure of the sandwich panel is delamination of the face 

laminate from the sandwiched core (Kalny 2003). While this is not a failure analysis, the 

results obtained will furnish the reader with a general idea of the effects of temperature 

on this highly indeterminate structure. The effects of two types of temperature changes 

– differential and uniform – will be analyzed. 

When a body of say, length L experiences a change in temperature ∆T, a 

corresponding change in its dimension ∆L is observed. This change in dimension is 

proportional to the body’s initial dimension and the temperature change. Thus thermal 

strains in the body can be computed using the following linear relation:  

thermal L T
L
Δ

ε = = αΔ  Equation 8.1 

where α  is the proportionality constant between the thermal strain and temperature 

change from some reference temperature. This constant is known as the coefficient of 

thermal expansion. 
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When dealing with an orthotropic material, such as the face laminates described 

in Section 3.3 (Chapter 3), thermal strains in two different directions can be defined. 

These are the strains in the longitudinal and transverse directions, and are given by the 

following equations (Agarwal and Broutman 1980): 

= Δε αthermal
L L T  Equation 8.2a 

= Δε αthermal
T T T  Equation 8.2b 

where Lα  and Tα  represent the longitudinal and transverse coefficient of thermal 

expansion respectively. 

All resins have positive thermal expansion coefficients which are within the range 

of about 30 x 10-6/ 0C and 100 x 10-6/ 0C. E-glass, on the other hand, has a low 

coefficient of thermal expansion of about 5.04 x 10-6/ 0C. In the fiber direction, carbon 

fibers have a negative coefficient of -0.99 x 10-6/ 0C, while in the direction transverse to 

the fibers, its coefficient is 16.7 x 10-6/ 0C (Barbero 1999). 

8.2 Determination of Lamina Thermal Expansion Coefficients 

It was mentioned previously that composite materials have two coefficients of 

thermal expansion. Expressions to calculate these constants are well documented in 

literature such as Agarwal and Broutman (1980) and Barbero (1999). These equations 

are shown in this section to illustrate their application in the present study. For a lamina 

(a layer or ply of composite material), the thermal coefficient in the fiber direction 1α  can 

be computed from Equation 8.3 below: 

( )1 f f f m m m
1

1 E V E V
E

α = α + α  Equation 8.3 
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where fα  and mα  refer to the coefficients of thermal expansion for fibers and matrix, Ef 

and Em symbolize the elastic modulus of the fiber and matrix, E1 is the equivalent 

elastic modulus of the lamina which can be evaluated from the Rule of Mixtures 

discussed in Chapter 3 (Equation 3.6) and Vf and Vm are the fiber and matrix volume 

fractions related by the expression, 

f mV V 1+ =  Equation 8.4 

In the direction perpendicular to the fibers, the thermal expansion coefficient can 

be computed from the equation below: 

( ) ( )2 f f f m m m 1 121 v V 1 v V vα = + α + + α − α  Equation 8.5   

where vf and vm represent the fiber and matrix Poisson’s ratios and v12 is the major 

Poisson’s ratio of the lamina which can also be computed from the Rule of Mixtures 

discussed in Chapter 3 (Equation 3.10). 

It can be noted from Equations 8.3 and 8.5 that it is possible to tailor the thermal 

coefficient to specific needs by changing the fiber volume fraction and this is an 

advantage possessed by composite materials. It is also pertinent to note that the 

longitudinal thermal coefficient 1α  is usually smaller than the transverse thermal 

coefficient 2α . This is because the thermal expansion behavior in the longitudinal 

direction is dominated more by the fibers which usually have a smaller coefficient of 

expansion than the matrix. On the other hand, in the transverse direction, the behavior 

is controlled more by the matrix material and hence causes the composite to experience 

greater changes in dimension in this direction. 

For randomly oriented composite plies such as that of the core material (Table 

3.1 in Chapter 3), the behavior of the material is assumed to be isotropic in the plane of 
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the layer. The thermal expansion coefficient qα  can therefore be obtained using the 

relationship in the following equation (Barbero 1999): 

( )
1 2 1 2 1 2

q
1 21 2

E E
2 2 E 1 2v E

⎛ ⎞α + α α − α −
α = + ⎜ ⎟⎜ ⎟+ +⎝ ⎠

 Equation 8.6 

where E2 is the transverse elastic modulus of the composite which can be computed 

from Equation 3.9 and v21 is the minor Poisson’s ratio obtained from Equation 3.11 

(Chapter 3). 

The constituents of the laminae used for the sandwich panels of the present 

study are E-glass fibers and polyester resin matrix. The properties of these materials 

are shown in Table 8.1 (Barbero 1999 and Davalos et al. 2001). In Table 8.2, the 

thermal expansion coefficients of each lamina making up the panel can be seen. These 

coefficients are computed based on the formulations just discussed in this section and 

the properties in Table 3.1 (Chapter 3). 

Material α  *10-6(/ 0C) E (GPa) ν 
Polyester Resin 30 5.06 0.3 

Glass Fibers 5.04 72.4 0.255 
 

Ply Name Orientation 1α  *10-6(/ 0C) 2α  *10-6(/ 0C) qα  *10-6(/ 0C) 

Bond Layer Random 19.4013 25.7162 22.5588 
CM3205 0 or 90 8.1114 25.4062   
CM3205 Random 17.1390 24.4021 20.7706 
UM1810 0 7.7253 24.4050   
UM1810 Random 14.3208 21.4387 17.8798 
Core Mat Random 17.1390 24.4021 20.7706 

 

Table 8.1: Properties of constituent materials 

Table 8.2: Laminae thermal coefficients of expansion 
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8.3 Determination of Laminate Thermal Expansion Coefficients 

Once the laminae coefficients of thermal expansion have been computed from 

Section 8.2, the effective laminate coefficients of thermal expansion can be developed. 

(A laminate refers to an arrangement of an arbitrary number of laminae. Each lamina 

has its plane of elastic symmetry in the plane of the laminate). This can be done if the 

stacking configuration of the laminate is known. The configuration and laminae 

orientation of the sandwich panel face laminates used in this study can be seen in Fig. 

3.2 (Chapter 3). First, the thermal coefficients are derived from the thermal force 

resultants. These force resultants are expressed in terms of the laminae stiffness 

properties 
k

ijQ  in the global x-y coordinate system by the following equations (Whitney et 

al. 1982): 

n k k kT k k k
11 12 16x x y xy k k 1

k 1
N (Q Q Q )(h h ) T−

=

= α + α + α − Δ∑  Equation 8.7a 

n k k kT k k k
12 22 26y x y xy k k 1

k 1
N (Q Q Q )(h h ) T−

=

= α + α + α − Δ∑  Equation 8.7b 

n k k kT k k k
11 12 16x x y xy k k 1

k 1
N (Q Q Q )(h h ) T−

=

= α + α + α − Δ∑  Equation 8.7c 

The stiffness properties 
k

ijQ  have been discussed in Section 3.3 and the laminate 

nomenclature is shown in Fig. 3.3. The thermal coefficients of the kth lamina k
xα , k

yα  

and k
xyα  can be obtained from the lamina fiber orientation θ  by the following formulae: 

k k 2 k 2
x 1 k 2 kcos sinα = α θ + α θ  Equation 8.8a 

k k 2 k 2
y 1 k 2 ksin cosα = α θ + α θ  Equation 8.8b 

k k k
xy 1 k k 2 k k2 cos sin 2 cos sinα = α θ θ − α θ θ  Equation 8.8c 
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The effective thermal coefficient for a balanced-symmetric laminate (such the 

face laminates of the present study shown in Fig. 3.2) can then be written in terms of 

the thermal force resultants of Equation 8.7 by the following formulae: 

T T
22 x 12 y

x 2
11 22 12

A N A N
(A A A ) T

−
α =

− Δ
 Equation 8.9a 

T T
11 y 12 x

y 2
11 22 12

A N A N
(A A A ) T

−
α =

− Δ
 Equation 8.9b 

T
xy xy 66N A T 0α = Δ =  Equation 8.9c 

where xα , yα  and xyα  symbolize the laminate effective longitudinal, transverse and 

shear coefficients of thermal expansion respectively and the Aij terms represent the 

terms of the extensional stiffness matrix [A] which can be computed from Equation 3.20 

(Chapter 3). 

The effective coefficients of expansion of the face laminates and the core 

material computed based on Equations 8.7 to 8.9 are shown in Table 8.3. A more 

detailed worksheet of the computation can be viewed in Appendix C. 

Component xα  *10-6(/ 0C) yα  *10-6(/ 0C) qα  *10-6(/ 0C) 

Faces 12.2939 19.7187   
Core Mat     20.7706 

 

8.4 Case Study – Crawford County Bridge 

Thermal studies carried out in this chapter are performed on FRP panels used 

over a rehabilitated bridge in Crawford County, Kansas. It must be emphasized first of 

all that this case study is simply a conceptual one. It is performed primarily to help the 

Table 8.3: Thermal expansion coefficients of face laminates and core 
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reader appreciate the analysis approach employed, and have a general idea of the FRP 

bridge’s performance under thermal loading. The data used in the analysis are utilized 

to meet that end. The bridge was originally an asphalt-on-steel deck supported by 14 

W21 x 68 I-beam stringers (Gill 1998). It was then replaced by the KSDOT with fiber-

reinforced polymer sandwich panels manufactured by Kansas Structural Composites, 

Inc in 1999. The entire bridge was 45 ft long and 32 ft wide. The deck panels were 32 ft 

by 9 ft and were laid across the longitudinal stringers, perpendicular to traffic. The 

panels were bolted onto specially designed saddles and the already existing I-beams. 

Fig. 8.1 shows the FRP panels resting on the saddle beams during the construction 

stage of the project. 

 

  

Figure 8.1: Construction of Crawford County Bridge showing FRP panels and 
Saddle Beams 
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The temperature data used in this thermal study is obtained from measurements 

performed by Kansas Department of Transportation on the bridge each day from 

December 2002 to July 2004 (Meggers 2005) Temperature measurements of the top 

and bottom faces of the bridge were taken every two hours. The ambient temperatures 

were also measured each time. The temperature measurements performed on the 

bridge for a one-year period from August 2003 to July 2004 are first examined to 

determine which days are critical. First, a linear temperature distribution is assumed 

along the depth of the sandwich panel section. Critical cases are obtained by computing 

the temperature gradient of the section and comparing with the ambient (reference) 

temperature. The objective is to obtain two one-week spans representing the coldest 

and warmest week of the year. These weeks will include the worst thermal conditions. 

The data sets with the highest temperature gradients and largest differences from the 

reference represent the critical cases of interest. From this data analysis, the coldest 

week is found to be February 7 – 13, 2004, while the warmest is June 21 – 27, 2004. 

The temperature measurements by the Kansas Department of Transportation for these 

weeks can be seen in Figs. 8.2 and 8.3. The figures show temperatures at the top and 

bottom of the panel as well as the ambient temperature for every two hours of those two 

weeks. 

 
 
 



 214

 

 

 

Figure 8.2: Crawford County bridge temperature measurements by Kansas 
DOT for Feb. 7-13, 2004 

Figure 8.3: Crawford County bridge temperature measurements by Kansas 
DOT for June 21-27, 2004 
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8.5 Finite Element Modeling 

For the purpose of this study, a portion of the panel, 8 ft long by 9 ft wide by 5 in. 

deep is modeled. The modeling of the bridge follows the same technique discussed in 

Section 3.4.1 (Chapter 3). Structural shell elements are employed. The model has a 

total of 83,328 elements and 60,466 nodes. Since the Crawford County Bridge was 

manufactured by Kansas Structural Composites Inc., the material properties of the core 

mat and face laminates shown in Tables 3.1 and 3.2 are used.  

Two modeling cases are considered and compared for worst case thermal 

behavior. The first case deals with the panel with simple supports, while the second 

considers continuous supports in view of the saddle beams on which the panels are 

bolted. The thermal analysis is performed for the worst case temperature data set of 

each day from Figs. 8.2 and 8.3. This gives a total of fourteen thermal load cases for the 

two weeks applied on each model. The objective of the analysis is to study the thermal 

stress levels of the interface between the top face and core where delamination often 

occurs and to know the general stress distribution in the panel. 

Bridges experience both daily and seasonal temperature variations. It has been 

observed that these fluctuations in temperature can be divided into two separate 

components – a gradient and a uniform change (Barker and Puckett 1997). These two 

components form the basis of the thermal study conducted in this work and discussed in 

the succeeding sections. It is good to note that even though these stresses may not be 

as significant as those from mechanical static or dynamic loads, their impact may 

become felt after a long period of time due to possible fatigue as a result of cyclic 

thermal loading. 
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8.6 Structural Behavior due to Gradient Temperature Change 

Significant temperature differences between the top and bottom faces of the 

panel result in high temperature gradients across the section’s depth. This could result 

in temperature induced curvatures which introduce internal stresses not only in the 

interface between the top face and core, but in the entire structure. This in turn could 

lead to delamination of the top face from the core. Because of the importance of these 

stresses, the thermal behavior of the panel due to these differential temperatures is now 

examined. 

The ambient temperature is taken as the reference temperature for the purpose 

of the present analysis. Reference temperature actually refers to the temperature at 

which the structure is considered to be free of stress if no mechanical static or dynamic 

loads are applied. At ambient temperatures, residual stresses already exist caused by 

temperature changes between fabrication and room temperatures during the 

manufacturing stage of the composite structure. These residual stresses are however 

ignored for the purpose of this study. 

The thermal load cases are applied on the model as described in the previous 

section, and the maximum stresses at the interface between the top face and core are 

recorded. The stresses focused on primarily are normal stresses in the vertical 

(thickness) direction zσ  which can cause pulling away of the face from the core, as well 

as shear stresses xzτ  and yzτ  which may result in shearing away of the top face from the 

core. (The x-direction is the longitudinal direction of the panel while the y-direction is the 

transverse). Other stresses ( xσ , yσ  and xyτ ) are also noted. It is worthy of note that the 

sign convention for the normal nodal stresses zσ  is very important. In the finite element 
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model of this work, positive stress zσ  tends to pull the top face in the positive direction – 

away from the core – and hence cause delamination. The negative stress, on the other 

hand, works against delamination and is therefore of benefit to the panel for this effect. 

If some other effects are studied, such as local buckling of web elements, the negative 

stress values of zσ  will be of significance. Hence in the case of zσ , interest in this study 

focuses on the positive values. For other stresses ( xzτ , yzτ , xσ , yσ  and xyτ ), the sign 

convention is immaterial since the isotropic interface have the same effects in both 

directions (x and y). 

8.6.1 Case 1 – Modeling and Analysis of Simply Supported Panel 

To model the simple supports of the panel, the nodes of the bottom face at one 

end of the structure are constrained for translational displacements in the three 

orthogonal directions – x, y and z – to simulate a pin support. At the other end, a roller 

in the longitudinal (x) direction is modeled by constraining the vertical (z) and lateral (y) 

translations. In Fig. 8.4, the ANSYS model showing the support conditions can be seen. 

Figs. 8.5 and 8.6 show the graphs of the six different stresses ( xσ , yσ , zσ , xzτ , yzτ  and 

xyτ ) from the thermal analysis for the two separate weeks in February and June. The 

stresses recorded are the maximum stresses of the panel. As we will see, these 

maximum stresses occur at the supports of the structure for reasons that will be 

explained later. 
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It can be noted from Figs 8.5 and 8.6 that the normal stress zσ  and shear 

stresses xzτ  and yzτ  are very significant in comparison with the other stresses. For the 

coldest week (Fig. 8.5), these significant stresses have maximum values of 74 psi, 56 

psi and 60 psi respectively. The values for the warmest week (Fig. 8.6) are 54 psi, 57 

psi and 63 psi respectively. All maximum stress values were noted to occur at the 

location of the pinned support. This is because high reaction forces are induced during 

loading. This is explained further in Section 8.6.3. It must be borne in mind that the 

values recorded for zσ  are the maximum positive stresses which has the tendency to 

separate the top face from the core. 

Figure 8.4: ANSYS model showing simple support conditions 
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Figure 8.5: Thermal stresses due to gradient temperature 
changes of Case 1 (Feb. 7-13, 2004) 

Figure 8.6: Thermal stresses due to gradient temperature changes of 
Case 1 (June 21-27, 2004) 
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To help better appreciate conceptually the significance of these stress values, 

consider the properties of polyester resin which is the matrix used on the bonding layer 

in the interface between the top face and the core. The tensile and shear strengths have 

the same value of 75.9 Mpa (11,000 psi) (Barbero 1999). According to the maximum 

stress failure theory, failure of a layer occurs when at least one of the stresses in 

material coordinates exceeds the corresponding specified allowable value. Therefore 

failure takes place if any of the following conditions in Equation 8.10 is met: 

L LFσ >  Equation 8.10a 

T TFσ >  Equation 8.10b 

LT LTFσ >  Equation 8.10c 

where Lσ , Tσ  and LTσ  are the longitudinal, transverse and shear stresses in the 

layer, and FL, FT and FLT represent the corresponding allowable values. Of course, for 

the longitudinal and transverse directions, care must be taken to note whether the 

stress is compressive or tensile and the comparison should be made with the 

corresponding strength. 

Suppose the allowable tensile and shear stresses have the same value of 5 Mpa 

(725 psi). It is obvious from Equation 8.10 that the maximum stresses zσ , xzτ  and yzτ  

(74 psi, 57 psi and 63 psi) are well below failure. This would mean that under thermal 

conditions alone, the bond in the interface will be maintained. Again it must be 

emphasized that this analysis is only conceptual. It furnishes the reader a general idea 

of the thermal behavior of the panel. Actually, in many design cases, thermal loads do 

not usually exceed any strength limit state, but the loads can be of concern regarding 

serviceability (Barker and Puckett 1997). 
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8.6.2 Case 2 – Modeling and Analysis of Continuously Supported Panel 

In this next case, continuous supports are modeled for the panel resting on four 

equally spaced saddle beams which are bolted to the panel. Pinned connections are 

simulated by constraining the nodes of the bottom face at the location of the supports 

for translational displacements in all three directions – x, y and z. Fig. 8.7 shows the 

ANSYS model illustrating the continuous boundary conditions. In Figs. 8.8 and 8.9, 

graphs are presented to show the six different stresses ( xσ , yσ , zσ , xzτ , yzτ  and xyτ ) 

from the thermal analysis for the two separate weeks in February and June. The 

stresses recorded are the maximum stresses experienced by the panel. 

 

Figure8.7: ANSYS model showing continuous support conditions 
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Figure 8.8: Thermal stresses due to differential temperature changes of 
Case 2 (Feb. 7-13, 2004) 

Figure 8.9: Thermal stresses due to differential temperature changes of 
Case 2 (June 21-27, 2004) 
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The graphs in Figs 8.8 and 8.9 are very similar to those for case 1 in Figs. 8.5 

and 8.6. Again zσ , xzτ  and yzτ  are very significant when compared with yσ  and xyτ . 

From Fig. 8.8, the coldest week records maximum values for these significant stresses 

as 66 psi, 53 psi and 55 psi respectively. For the warmest week, these values are 58 

psi, 56 psi and 61 psi (Fig. 8.9). Just as in the case of the simply supported panel, the 

maximum stresses here are observed to occur at the supports of the structure. There 

are, however some significant differences between cases 1 and 2 as discussed in the 

following section.  

8.6.3 Comparison between Results of Simple and Continuous Supports 

Figs. 8.10 and 8.11 show comparisons of the normal stresses in the longitudinal 

direction xσ  for the simply and continuously supported panels. It can be observed from 

the figures that xσ  is very significant for the case of the continuously supported panel. 

The maximum values for this stress for the coldest and warmest weeks are 58 psi and 

69 psi. For the simply supported panel however, this stress has corresponding 

maximum values of only 29 psi and 32 psi. This significant difference can be explained 

by understanding the constraint conditions in the panel. For the simply supported panel, 

the structure is free to translate in the longitudinal (x) direction at the roller support. On 

the other hand, the continuously supported panel induces reactions and forces in the x-

direction at the supports and the entire structure which accounts for the higher normal 

stress xσ . 

Figs. 8.12 to 8.17 show similar comparisons for zσ , xzτ  and yzτ . It is interesting 

to note that unlike in the case of xσ , the simply supported panel shows consistently 
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higher values of zσ , xzτ  and yzτ  than the continuously supported panel. This difference 

can be better understood when we think about what happens to the panel when it is 

subjected to a gradient temperature change. If, for instance, a panel is subjected to 

sunshine, the top face heats up more than the bottom face. As a result of this non-

uniform heating, there is a differential in temperature between both faces which results 

in a bowing upward of the panel. For a panel that has internal restraints, compatibility 

actions are induced. On the other side of the coin, a simply supported panel will have 

internal stress due to the piecewise linear temperature gradient (Barker and Puckett 

1997). This could be the result of the slightly higher values of zσ , xzτ  and yzτ  for the 

simply supported panel. Additionally, the vertical reactions and forces in the 

continuously supported panel are distributed to more supports than in the case of the 

simply supported structure making the latter structure develop higher vertical stress 

values at its supports. 

Because the high stress values noted for the structure are related to induced 

reactions at restraints, it is little wonder that the maximum values occur at the supports 

of the structure. This is true for both the simply and continuously supported panels. 
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Figure 8.10: Comparison of xσ  (psi) for Simply and 
Continuously Supported Panels (Feb.) 

Figure 8.11: Comparison of xσ  (psi) for Simply and 
Continuously Supported Panels (June) 
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Figure 8.12: Comparison of zσ  (psi) for Simply and 
Continuously Supported Panels (Feb.) 

Figure 8.13: Comparison of zσ  (psi) for Simply and 
Continuously Supported Panels (June) 
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Figure 8.14: Comparison of xzτ  (psi) for Simply and Continuously 
Supported Panels (Feb.) 

Figure 8.15: Comparison of xzτ  (psi) for Simply and 
Continuously Supported Panels (June) 
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Figure 8.16: Comparison of yzτ  (psi) for Simply and 
Continuously Supported Panels (Feb.) 

Figure 8.17: Comparison of yzτ  (psi) for Simply and 
Continuously Supported Panels (June) 
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8.7 Structural Behavior due to Uniform Temperature Change 

In uniform temperature change, the entire structure experiences a change in 

temperature by a constant amount. The effect on the structure is a lengthening or 

shortening of the bridge which induces stresses (forces and reactions). In studying the 

behavior of the panel due to this uniform change, a temperature range of the structure is 

first determined. The limits of this range are based on temperatures within which the 

structure will stay irrespective of structure types. This range is used to establish the 

value of temperature change with respect to a reference (such as construction 

temperature) that should be used in a thermal analysis. AASHTO standards define this 

range for certain materials such as steel and concrete (Barker and Puckett 1997). 

However, the specifications for FRP materials are not available. The temperature of the 

structure is a function of thermal properties such as specific heat of the material, mass, 

heat conductivity and surface-to-volume ratio.  

Therefore, to establish these bounds for the purpose of this study, the 

temperature data collected for the Crawford County Bridge during August 2003 through 

July 2004 (Section 8.4) is examined. The structure’s maximum and minimum 

temperatures obtained from this examination are 132.5 0F (July 12, 2004) and -17.5 0F 

(Feb. 8, 2004) respectively. Thus, a temperature range of -20 0F to 135 0F is assumed 

for analysis purpose. 

Next, a reference temperature is assumed. As was discussed in Section 8.6, this 

temperature is that at which the structure is considered to be free of stress if no 

mechanical static or dynamic loads are applied. In this study however, an assumed 



 230

construction temperature is chosen and residual stresses which may exist in the bridge 

are ignored. The temperature assumed at construction is 40 0F.  

The same finite element model as used in Section 8.6 is employed in this 

section. Two cases are examined – temperature rise and fall of the construction 

temperature with respect to the upper and lower bounds. Each of these two cases is 

examined for the two different structural boundary conditions described in Sections 

8.6.2 and 8.6.3. The rise and fall in temperature are computed from Equations 8.11 and 

8.12 respectively: 

Rise U RT T TΔ = −  Equation 8.11 

Fall L RT T TΔ = −  Equation 8.12 

where TU and TL represent the upper and lower limits of the assumed temperature 

range, and TR refers to the selected reference temperature. 

The results of the finite element analysis for both temperature rise and fall are 

presented in Table 8.4. The table shows the maximum values of the six different 

stresses – xσ , yσ , zσ , xzτ , yzτ  and xyτ  – at the interface between the top face and 

core. A comparison between simple and continuous supports can be observed. All 

maximum stress values occur at the location of the supports of the panel for the same 

reason as was explained in Section 8.6.3. The restraints in the structure cause high 

stresses to be induced. As was explained in Section 8.6, the values recorded for zσ  are 

the maximum positive stresses which have the tendency to separate the top face from 

the core. 

It can be noticed from Table 8.4 that the stress results for temperature rise are 

consistently higher than those for temperature fall for all stresses. This is simply 
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because the rise in temperature in this particular analysis is greater than the fall, with 

respect to the reference (assumed construction) temperature. Induced stresses and 

strains are a function of and proportional to temperature difference as can be noticed 

conceptually from Equation 8.1, 8.2 or 8.7. 

Of interest also is the comparison between the results of the simply and 

continuously supported panels. In each case of temperature rise and fall, the 

continuously supported panel produces higher values than the simply supported for all 

corresponding stresses. It is not difficult to understand why this is the case when we 

consider the structural behavior of a panel under uniform temperature change. Under 

this effect, the bridge lengthens or shortens depending on thermal properties. 

Constraints in the structure cause reactions and forces to develop. Thus the 

continuously supported structure experiences higher values of induced stresses. It can 

therefore be said that subjected to uniform temperature changes, a simply supported 

panel will perform structurally better than a similar panel having continuous supports 

assuming other factors remaining unchanged. 
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Temp. Boundary Condtion xσ  yσ  zσ  xyτ  yzτ  xzτ  

Temp. Rise Simple Support -67.014 -49.85 100.93 -52.428 84.446 -73.117 
Continuous Support -181.63 -64.131 132.57 -71.994 102.49 -87.943 

Temp. Fall Simple Support 40.561 30.172 62.447 31.733 -51.112 44.255 
Continuous Support 109.93 38.816 73.498 43.575 -62.032 53.228 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8.4: Thermal stresses (psi) for uniform temperature change of panel 
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CHAPTER 9 -  CONCLUSIONS AND RECOMMENDATIONS 

9.1 Summary 

This study has focused primarily on employing finite element modeling 

techniques to evaluate the performance of a highly indeterminate and complex fiber 

reinforced polymer (FRP) sandwich bridge panel. The panel system is composed of a 

sinusoidal wave honeycomb core sandwiched by top and bottom face laminates. In view 

of the complexity of the core geometry, an effort was made to transform the panel 

section into an equivalent solid orthotropic plate. In this regard, a distinction was made 

between axial and bending behaviors, and equivalent properties were developed 

correspondingly. 

The equivalent properties due to in-plane (axial) response were derived for the 

three different parts of the panel. Micro- and macro- mechanics were employed in 

computing the properties of the top and bottom face laminates, and a finite element 

approach was developed for obtaining the equivalent core properties in the three 

orthogonal directions. Once the method for the core was verified, parametric studies 

were performed to derive equations of the elastic modulus in the three directions as 

functions of core parameters. The equations were formulated using curve fitting 

techniques and regression analysis. The in-plane properties of the entire panel can be 

easily calculated once the properties of the core and face laminates are known. 

In comparison, equivalent properties relating to out-of-plane (bending) behavior 

of the panel were developed for the whole sandwich structure – top face, core and 

bottom face – acting as a single orthotropic plate, since the out-of-plane properties 

cannot be simply added together from the components. A finite element approach was 
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devised to obtain the equivalent stiffness constants – flexural and shear – of the single 

layered structure. These constants were verified both for a beam and a panel. Once the 

verification was done, parametric studies were carried out to develop equations for 

shear and flexural stiffnesses. The techniques used to develop these equations were 

the same as in the case of the in-plane behavior – curve fitting and regression analysis. 

The effect on structural stiffness of a layer of wearing surface was also studied. 

With the assumption that perfect bonding exists between the overlay material and the 

panel top face, the stiffness contribution of the wearing stiffness was examined. This 

was done by adding a new layer of elements on the previously developed equivalent 

orthotropic plate. A simplified method to compute this increased stiffness of the 

structure was proposed.  

Finally, a conceptual study of the thermal behavior of the panel was conducted to 

present the reader with an overview of the level of stresses in the panel. Thermal 

expansion coefficients of the panel components were first computed. A distinction was 

made between gradient and uniform temperature changes, and thermal studies were 

performed for each case. The interface between the top face and the core was given 

primary attention since failure through delamination is a major concern at that location. 

9.2 Conclusions 

The sinusoidal wave core FRP sandwich panel is a highly indeterminate 

structure. Based on the study performed and presented in this research work, the 

conclusions made can be summarized as below. 

To analyze and design the FRP honeycomb core for in-plane (axial) behavior, its 

complex configuration can be simplified to an equivalent solid plate. The elastic 
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properties of this equivalent structure can be computed using the formulation presented 

in this work. These equations are summarized as follows. In the longitudinal (x) 

direction, the formula for the elastic modulus Ex as a function of flute half-wavelength L 

(in.), flute-width W (in.), core height H (in.), flat/flute thickness t (in.) and core mat 

modulus of elasticity E11 (psi) can be represented as (Equation 4.12),   

m p n
x 11E KL H W tE=  Equation 9.1 

where K 1.0580= , m -5.2332E - 02= , p 4.7176E 02= −  and n -1.0083= . 

In the transverse direction, elastic modulus Ey (psi) as a function of the same 

parameters can be computed using the following equation (Equation 4.24): 

k r q
y 11E SL H t (C lnW)E= +  Equation 9.2 

where S 9.3770E 01= + , k -3.4594= , r -2.5138E - 02= , q = 2.2267  and C = 0.3069 . 

Finally, the elastic modulus in the vertical direction Ez (psi) can be calculated 

using the formula (Equation 4.36): 

g u v
z 11E DW L H tE=  Equation 9.3 

where D 3.8002= , g -0.7194= , u -0.3538=  and v -2.5096E - 02= . 

This formulation could be useful in the analysis and design of structural members 

where axial effects are of paramount importance such as columns. For a sandwich 

structure – where the core is enveloped by top and bottom faces – the elastic properties 

of the faces can be computed separately using macro-mechanics approach described in 

this work. 

The analysis of the sandwich panel for out-of-plane behavior (bending) was also 

performed. The entire complicated panel can be reduced to an equivalent solid 

orthotropic plate whose flexural and shear properties can be calculated from the 
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equations formulated in this work. This approach comes handy when dealing with 

bridge decks whose behavior is governed by bending and perhaps shear response. The 

equations are summarized as follows. Flexural stiffness for bending about the 

transverse (y) axis causing strain in the longitudinal (x) direction ExIyy can be 

represented by the following formula (Equation 6.17) 

x yy 1 2 3 4 5 6 7 x yy HE I B B B B B B B (E I )=  Equation 9.4 

where B1, B2, B3, B4, B5, B6, B7 are modification factors for face longitudinal Young’s 

modulus, face transverse Young’s modulus, face thickness, core mat elastic modulus, 

core flute-width, core half-wavelength and core mat thickness respectively which can be 

computed from Equations 6.10 to 6.16. (ExIyy)H is the flexural stiffness equation as a 

function of core height H alone with other parameters kept constant at their basic values 

(Equation 6.2). The basic values are shown in Table 6.3 (Chapter 6). It must be noted 

that the stiffness equation for ExIyy is not per unit width, but for a section whose width is 

four times the flute-width. 

Flexural stiffness for bending about the longitudinal (x) axis causing strain in the 

transverse (y) direction EyIxx can be shown mathematically as follows (Equation 6.35): 

y xx 1 2 3 4 5 6 7 y xx HE I C C C C C C C (E I )=  Equation 9.5 

where C1, C2, C3, C4, C5, C6, C7 are modification factors for face transverse Young’s 

modulus, face longitudinal Young’s modulus, face thickness, core mat elastic modulus, 

core flute-width, core half-wavelength and core mat thickness respectively which can be 

computed from Equations 6.28 to 6.34. (EyIxx)H is the flexural stiffness equation as a 

function of core height H alone with other parameters kept constant at their basic values 



 237

(Equation 6.20). The stiffness equation for EyIxx is not per unit width, but for a section 

whose width is twice the half-wavelength. 

Lastly, the shear stiffness GxyAs can be computed using the following 

expression (Equation 6.48): 

xy s 1 2 3 xy s E _ x1G A D D D (G A )=  Equation 9.6 

where D1, D2 and D3 are modification factors for face shear modulus, face thickness 

and core height which are shown in Equations 6.45 to 6.47. (GxyAs)E_x1 refers to the 

shear stiffness in terms of the face longitudinal Young’s modulus alone when other 

parameters are held constant at their basic values, and can be seen in Equation 6.40.  

In many designs, the contribution to structural stiffness of the wearing surface is 

not considered. From this research, it was found that the overlay may contribute 

significantly to the stiffness of the FRP sandwich panel, depending of the elastic 

modulus and thickness of the material used. This contribution could be utilized by 

structural analysts and designers. Using the properties developed for the equivalent 

solid orthotropic plate, the stiffness of the entire structure with a layer of wearing surface 

can be computed using the traditional methods described or the finite element approach 

discussed. 

The conceptual thermal analysis performed in this work compared the same 

panel under two different boundary conditions – simple and continuous support. The 

finite element study showed that under uniform temperature change all stresses at the 

interface were consistently higher for the case of the continuously supported panel. This 

is because of forces and reactions induced as the structure tries to lengthen or shorten. 

In the case of the simple supports however, fewer constraints would imply less induced 
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forces and reactions. This is especially so since one end of the simple supports is a 

roller. For the differential temperature change, it was observed that the normal stress in 

the longitudinal direction xσ  was higher for the continuously supported panel than for 

the simply supported. This was due to the fact that the latter structure was free to 

translate longitudinally at the roller support, while this freedom was constrained at all 

supports in the former structure. Hence greater induced stresses for xσ  were noted for 

the continuously supported panel.  

9.3 Recommendations for Further Research 

Some recommendations are now presented to provide some insight on further 

research needed. 

 Non-linear analysis 

One of the main concerns of this highly indeterminate and complex structure is 

its non-linear behavior. Although FRP materials (such as E-Glass) are linearly elastic, 

the structure as a whole behaves non-linearly. This work concentrated on performing 

finite element analysis within the linear range of the structure. Further research is 

therefore needed to investigate non-linear behavior. It was mentioned that a major 

failure mode experienced by sandwich structures is delamination. Another potential 

source of failure is local buckling of the flats and flutes. Therefore non-linear analysis 

with a view to investigating failure would no doubt be essential. 

 Effective width formulation 

The effective width is a very important parameter in the design of bridge decks. It 

is the distance over which the concentrated wheel load is assumed to be uniformly 

distributed. Design standards exist for bridges of different materials such as reinforced 



 239

concrete. However, none exists for the FRP bridge type considered in this work. Once 

the effective width of a bridge is known, the design is done only for that portion of the 

structure. This design can be safely applied to the entire structure. Hence the 

development of effective width for this panel type will most certainly be beneficial. 

 Wearing surface bond 

The study on wearing surface assumed that the bond existing in the interface 

between the overlay and the top face is perfect. Though this is a requirement for 

achieving the benefits of a wearing surface, it goes without saying that this is not true in 

actual practice due to many imperfections. Hence, the level of stress that exists in this 

interface has to be investigated. This would aid in the conceptual design, material 

selection and construction of the wearing surface. 

 Full deck modeling 

Because of the limitation in number of elements of the finite element software 

employed in this study (ANSYS 9.0 University Advanced version), it was impossible to 

model a full deck. For example, to build a very small model of 15 feet x 7.5 feet x 5 

inches, it would require about 133,200 elements since a minimum of 4 elements are 

required to model a sine wave. However, the element capacity of the available software 

is 128,000. Modeling a full deck would be beneficial for different applications such as 

comparing field results with finite element analysis, developing effective width equations 

and performing non-linear analysis. Hence devising methods to create finite element 

models of the full FRP sinusoidal wave-core sandwich deck will be helpful. 
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APPENDIX A: MICROSOFT C++ PROGRAM FOR 

GENERATION OF MACRO FILES 

Source File (meshit.cpp) 
 
#include "slab.h" 
#include "node.h" 
#include "time.h" 
void main(int argc, char** argv) { 
if (!argv[1]) {argv[1] = new char[7]; argv[1]="in.txt";} 
if (!argv[2]) {argv[2] = new char[12]; argv[2]="in-grid.txt";} 
okHoneyCombSlab slab(argv[1]); 
slab.ReadGrid("in-grid.txt"); 
slab.PrintInfo("grid-info.txt"); 
slab.AllocateNodeArrays(); 
slab.AddRibs(); 
//slab.PrintCoreToFile("core-info0.txt"); 
//slab.PrintFlangeToFile("flange-info0.txt"); 
slab.MergeNodes(); 
//slab.PrintCoreToFile("core-info1.txt"); 
//slab.PrintFlangeToFile("flange-info1.txt"); 
slab.PrintNodeFile("nodes.mac"); 
slab.PrintElementFile("elements.mac"); 
slab.Select(); 
cout << "\nConsumed time: " << " ???"; 
cout << "\n\nMeshIt, OK (c) 2001\n"; 
} 
 
Header File (slab.h) 
 
//slab.h 
#include <iostream.h> 
#include <math.h> 
#include <fstream.h> 
#include <iomanip.h>  //for matrix output formating 
#include "util_ok1.h" 
#include"node.h" 
#if !defined(_SLAB_H) 
#define _SLAB_H 
inline double ABS(double x) {if (x>=0) return x; else return -x;}; 
//Borland's abs is piece of junk (in some cases also rounds)!!! 
#define M_PI 3.14159265358979323846 
//as defined in Borland math.h file to ensure compiler independence 
#define SMALL_NO 0.00001 //1e-5 
//to cope with numerical instability 
//function added to set up breakpoint for gdb debugging 
void gdbdebug() {}; 
class okHoneyCombSlab { 
public: 
  //following are 2D and 3D arrays of pointers 
  okNode*** bottom_fl;  //coordinates of nodes at the bottom flange 
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  okNode**** web_nodes;  //coordinates of nodes in the web (1st and last row are duplication of 
                         //data from bottom_fl & top_fl; very useful for easier creation 
                         //of web elements, but I will not print them as duplicate nodes 
                         //into input macro file for ANSYS 
  okNode*** top_fl;  //coordinates of nodes at the top flange 
  okHoneyCombSlab() {}; 
  //function for wave shape calculation 
  double f(okRib r, double x); 
  okHoneyCombSlab(const char* filename); 
  int ReadGrid(const char* filename); 
  void AllocateNodeArrays();  //allocate BF, W_N and TF arrays 
  int AddRib(int index);  //adds one rib 
  void AddRibs();  //adds all ribs 
  void MergeNodes(); 
  void ImproveMesh(); 
  //not necessary 
  void PrintNodeFile(char* filename);  //prints nodes into input macro file for ANSYS 
  void PrintElementFile(char* filename); 
  void Select(char* filename="sel-default.mac"); 
  void SelectAll(); 
  void PrintInfo (const char* filename); 
  void PrintCoreToFile(char* filename); 
  void PrintFlangeToFile(char* filename); 
private: 
  //whether to generate mesh template of refined mesh 
  int option; 
  double depth;  //distance between the middle of top and bottom flange 
  double fl_x, fl_y, fl_X, fl_Y;  //"corner" coordinates of flanges 
  double co_x, co_y, co_X, co_Y;  //"corner" coortinates of core 
  //number of overhanging nodes 
  int fl_x_nodes_over, fl_y_nodes_over, fl_X_nodes_over, fl_Y_nodes_over; 
  //to be calculated 
  int fl_x_nodes, fl_y_nodes;  //total nodes per width and length of flange 
  int co_x_nodes, co_y_nodes;  //total nodes per width and length of core 
  //number of flutes and flats 
  int flute_no; 
  int flat_no; 
  //default values 
  double def_quarterwavelength; 
  /* 
  if other value than default is used than we need to recalculate number of 
  nodes per wavelenght to maintain consistent grid 
  */ 
  double def_flutewidth; 
  //following entries include boundary nodes 
  int def_nodes_per_quarterwavelength; 
  int def_nodes_per_flutewidth; 
  int nodes_per_depth; 
  //x, y and z coordinates of the 3D grid 
  double* x_grid; 
  double* y_grid; 
  double** z_grid; 
  /* 
  to have different increments but same number of nodes in z direction, 
  this will be possible just for non-touching elements 
  */ 
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  //pattern of flats and flutes 
  okRib* pattern; 
  //number of selections 
  int sel_no; 
  okSelection* s; 
}; //class okHoneyCombSlab 
#endif 
 
okHoneyCombSlab::okHoneyCombSlab(const char* filename) { 
  int i,j,k; 
  Comments_Leave(filename); 
  ifstream file(filename); 
  file >> option; 
  //slab properties 
  file >> fl_x; file >> fl_y; file >> fl_X; file >> fl_Y; 
  file >> co_x; file >> co_y; file >> co_X; file >> co_Y; 
  file >> depth; 
  file >> def_quarterwavelength; 
  file >> def_flutewidth; 
  file >> flute_no; 
  file >> flat_no; 
  //mesh properties 
  file >> fl_x_nodes_over; file >> fl_y_nodes_over; 
  file >> fl_X_nodes_over; file >> fl_Y_nodes_over; 
  file >> def_nodes_per_quarterwavelength; 
  file >> nodes_per_depth; 
  file >> def_nodes_per_flutewidth; 
  //refined slab properties 
  /* 
  if certain rib is invisible, than it will not included in AddRib() function 
  */ 
  pattern=new okRib[flute_no+flat_no]; 
  int no;  //auxiliary variable 
  for (i=0; i<=flute_no+flat_no-1; i++) { 
    file >> no; 
    switch (no) { 
      case 0: pattern[i].t=flat; break; 
      case 1: pattern[i].t=flute_sin0; break; 
      case 2: pattern[i].t=flute_sin90; break; 
      case 3: pattern[i].t=flute_sin180; break; 
      case 4: pattern[i].t=flute_sin270; break; 
      default: break; 
    } //switch 
    file >> pattern[i].x; 
    file >> pattern[i].y; 
    file >> pattern[i].X; 
    file >> pattern[i].flutewidth; 
    file >> pattern[i].nodes_per_flutewidth; 
    file >> pattern[i].quarterwavelength; 
    //if different from default, def_nodes_per_quarterwavelengh must be changed 
    file >> pattern[i].invisible; 
  } 
  //determination of last flute 
  int flute_index=0; 
  for (i=0; i<flat_no+flute_no; i++) { 
    pattern[i].lastflute=0; 
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    if (pattern[i].t!=0) { 
      flute_index++; 
      if (flute_index==flute_no) pattern[i].lastflute=1; 
    } 
  } 
  //selections input 
  file >> sel_no; 
  s = new okSelection[sel_no]; 
  for (i=0; i<sel_no; i++) { 
    file >> s[i].output; 
    s[i].no=i; 
    file >> s[i].n0_e1; 
    int cislo; 
    file >> cislo; 
    switch (cislo) { 
     case 0: s[i].part=BF; break; 
     case 1: s[i].part=TF; break; 
     case 2: s[i].part=WEB; break; 
     default: break; 
    } 
    file >> s[i].web_no; 
    file >> s[i].input_type; 
    switch (s[i].input_type) { 
      case 0: file >> s[i].x; file >> s[i].y; 
              file >> s[i].X; file >> s[i].Y; 
              break; 
      case 1: file >> s[i].xa; file >> s[i].ya; 
              file >> s[i].Xa; file >> s[i].Ya; 
              break; 
      default: break; 
    } //switch 
  } //selections 
 
  Comments_Add(filename); 
  //insert default witdths and lengths, etc; beg & end must be calculated 
  cout << "\n"; 
  for (i=0; i<flute_no+flat_no; i++) { 
    if (pattern[i].flutewidth==-1) 
      {pattern[i].flutewidth=def_flutewidth;} 
    if (pattern[i].nodes_per_flutewidth==-1) 
      {pattern[i].nodes_per_flutewidth=def_nodes_per_flutewidth;} 
    if (pattern[i].quarterwavelength==-1) 
      {pattern[i].quarterwavelength=def_quarterwavelength;} 
    else { 
      //change nodes_per_quarterwavelength; for future modification 
    }; 
  } //for 
  //calculation of co_x(y)_nodes and fl_x(y)_nodes 
  co_x_nodes=(co_X-co_x)/def_quarterwavelength*(def_nodes_per_quarterwavelength-1)+1; 
  co_y_nodes=0; 
  for (i=0; i<flute_no+flat_no; i++) { 
    if (pattern[i].t!=0) co_y_nodes=co_y_nodes+pattern[i].nodes_per_flutewidth-1; 
  } 
  co_y_nodes++;  //to add last row of boundary nodes 
  fl_x_nodes=co_x_nodes+(fl_x_nodes_over-1)+(fl_X_nodes_over-1); 
  fl_y_nodes=co_y_nodes+(fl_y_nodes_over-1)+(fl_Y_nodes_over-1); 
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  //memory allocation for x_,y_,z_grid 
  x_grid = new double[fl_x_nodes]; 
  y_grid = new double[fl_y_nodes]; 
  z_grid = new double*[flat_no+flute_no]; 
  for (i=0; i<flute_no+flat_no; i++) { 
    z_grid[i] = new double[nodes_per_depth]; 
  } 
  //calculation of x_grid 
  if (fl_x_nodes_over==1) {x_grid[0]=0;} 
  else {for (i=0; i<fl_x_nodes_over; i++) {x_grid[i]=i*(co_x-fl_x)/(fl_x_nodes_over-1);}} 
  for (i=fl_x_nodes_over; i<fl_x_nodes_over+co_x_nodes-2; i++) { 
    x_grid[i]=co_x+(i-fl_x_nodes_over+1)*def_quarterwavelength/(def_nodes_per_quarterwavelength-1); 
  } 
  if (fl_X_nodes_over==1) {x_grid[fl_x_nodes-1]=fl_X;} 
  else {for (i=fl_x_nodes_over+co_x_nodes-2; i<fl_x_nodes; i++) { 
          x_grid[i]=co_X+(i-(fl_x_nodes_over+co_x_nodes-2))*(fl_X-co_X)/(fl_X_nodes_over-1); 
        } //for 
  } //else 
  //calculation of y_grid 
  //"overhanging" y flange 
  if (fl_y_nodes_over==1) {y_grid[0]=0;} 
  else {for (i=0; i<fl_y_nodes_over; i++) {y_grid[i]=i*(co_y-fl_y)/(fl_y_nodes_over-1);}} 
  //core: we have to go flute by flute 
  i=fl_y_nodes_over; 
  for (j=0; j<flat_no+flute_no; j++) { 
    if (pattern[j].t!=0 & pattern[j].lastflute==0) { 
      pattern[j].low=i-1; 
      for (k=1; k<pattern[j].nodes_per_flutewidth; k++) { 
        y_grid[i]=y_grid[i-1]+pattern[j].flutewidth/(pattern[j].nodes_per_flutewidth-1); 
        i++; 
      } 
      pattern[j].top=i-1; 
    } 
    if (pattern[j].t!=0 & pattern[j].lastflute==1) { 
      pattern[j].low=i-1; 
      for (k=1; k<pattern[j].nodes_per_flutewidth-1; k++) { 
        y_grid[i]=y_grid[i-1]+pattern[j].flutewidth/(pattern[j].nodes_per_flutewidth-1); 
        i++; 
      } 
      pattern[j].top=i; 
    } 
    if (pattern[j].t==0) { 
      if (fl_x_nodes_over==1 & i==1) {pattern[j].low=0; pattern[j].top=0;} 
      else if (j==flat_no+flute_no-1) {pattern[j].low=i; pattern[j].top=i;} 
      else {pattern[j].low=i-1; pattern[j].top=i-1;} 
    } 
  } 
  //"overhanging" Y flange 
  if (fl_Y_nodes_over==1) {y_grid[fl_y_nodes-1]=fl_Y;} 
  else {for (i=fl_y_nodes_over+co_y_nodes-2; i<fl_y_nodes; i++) { 
          y_grid[i]=co_Y+(i-(fl_y_nodes_over+co_y_nodes-2))*(fl_Y-co_Y)/(fl_Y_nodes_over-1); 
        } //for 
  } //else 
  //calculation of z_grid 
  for (i=0; i<flat_no+flute_no; i++) { 
    for (j=0; j<nodes_per_depth; j++) { 
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      z_grid[i][j]=j*depth/(nodes_per_depth-1); 
    } 
  } 
  //determination of pattern[i].beg(end) 
  for (i=0; i<flute_no+flat_no; i++) { 
    for (j=0; j<fl_x_nodes; j++) { 
      if (ABS(pattern[i].x-x_grid[j])<SMALL_NO) {pattern[i].beg=j;} 
      if (ABS(pattern[i].X-x_grid[j])<SMALL_NO) {pattern[i].end=j;} 
    } 
  } 
 
} //okHoneyCombSlab::okHoneyCombSlab(char* filename) 
void okHoneyCombSlab::PrintInfo(const char* filename) { 
  int i, j; 
  ofstream file(filename);  //for output of grid information 
  cout << "\n\n***okHoneyCombSlab::PrintInfo()***"; 
  cout << "\nOption for mesh definition: " << option; 
  cout << "\n\nCorner coord. (x,y,X,Y) - flange: "; 
  cout << fl_x << "; " << fl_y << "; " << fl_X << "; " << fl_Y; 
  cout << "\n                        - core(x,y,X,Y): "; 
  cout << co_x << "; " << co_y << "; " << co_X << "; " << co_Y; 
  cout << "\nDepth: " << depth; 
  cout << "\nDefault - quarterwavelenght: " << def_quarterwavelength; 
  cout << "\n        - flutewidth: " << def_flutewidth; 
  cout << "\n\nTotal (length x width) nodes - flange: "; 
  cout << fl_x_nodes << "; " << fl_y_nodes; 
  cout << "\n                             - core: "; 
  cout << co_x_nodes << "; " << co_y_nodes; 
  cout << "\nOverhanging nodes (in direction of x,y,X,Y): "; 
  cout << fl_x_nodes_over << "; " << fl_y_nodes_over << "; "; 
  cout << fl_X_nodes_over << "; " << fl_Y_nodes_over; 
  cout << "\nNodes per - quarterwavelenght (default): " << def_nodes_per_quarterwavelength; 
  cout << "\n          - flutewidth (default): " << def_nodes_per_flutewidth; 
  cout << "\n          - depth: " << nodes_per_depth; 
  cout << "\n\n-----------------------"; 
  cout << "\n| Individual web info |"; 
  cout << "\n--------------------------------------------------------------------------"; 
  cout << "\n[ i] type|     x |      y |      X | width | n. | 1/4L  | in.| beg | end  "; 
  cout << "\n--------------------------------------------------------------------------"; 
  for (i=0; i<flute_no+flat_no; i++) { 
    cout << "\n[" << setw(2) << i << "] "; 
    cout << setw(3) << pattern[i].t << " | "; 
    cout << setw(5) << pattern[i].x << " | "; 
    cout << setw(6) << pattern[i].y << " | "; 
    cout << setw(6) << pattern[i].X << " | "; 
    cout << setw(5) << pattern[i].flutewidth << " | "; 
    cout << setw(2) << pattern[i].nodes_per_flutewidth << " | "; 
    cout << setw(5) << pattern[i].quarterwavelength << " | "; 
    cout << setw(2) << pattern[i].invisible << " | "; 
    cout << setw(3) << pattern[i].beg << " | "; 
    cout << setw(3) << pattern[i].end << " |"; 
    cout << pattern[i].lastflute << "|"; 
    cout << pattern[i].low << "*" << pattern[i].top; 
  } 
  cout << "\n"; 
  cout << "\nlast flute | pattern low | pattern top"; 
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  //output of x_,y_,z_grid into the file 
  file << "*** X grid:\n"; 
  for (i=0; i<fl_x_nodes; i++) { 
    file << setw(10) << x_grid[i] << " * [" << setw(3) << i << "]\n"; 
  } 
  file << "\n*** Y grid:\n"; 
  for (i=0; i<fl_y_nodes; i++) { 
    file << setw(10) << y_grid[i] << " * [" << setw(3) << i << "]\n"; 
  } 
  file << "\n*** Z grid:\n"; 
  for (i=0; i<flat_no+flute_no; i++) { 
    file << "* rib number " << i << "\n"; 
    for (j=0; j<nodes_per_depth; j++) { 
      file << setw(10) << z_grid[i][j] << " * [" << setw(3) << j << "]\n"; 
    } 
  } 
} //okHoneyCombSlab::PrintInfo() 
 
void okHoneyCombSlab::AllocateNodeArrays() { 
  int i,j,k; 
  //memory allocation 
  bottom_fl = new okNode**[fl_x_nodes]; 
  top_fl = new okNode**[fl_x_nodes]; 
  for (i=0; i<fl_x_nodes; i++) { 
    bottom_fl[i] = new okNode*[fl_y_nodes]; 
    top_fl[i] = new okNode*[fl_y_nodes]; 
    for (j=0; j<fl_y_nodes; j++) { 
      bottom_fl[i][j] = new okNode; 
      top_fl[i][j] = new okNode; 
    } 
  } 
  web_nodes = new okNode***[co_x_nodes]; 
  for (i=0; i<co_x_nodes; i++) { 
    web_nodes[i] = new okNode**[flute_no+flat_no]; 
    for (j=0; j<flute_no+flat_no; j++) { 
      web_nodes[i][j] = new okNode*[nodes_per_depth]; 
      for (k=0; k<nodes_per_depth; k++) {web_nodes[i][j][k] = new okNode;} 
    } 
  } 
  //coordinates assignment to TF and BF 
  for (i=0;i<fl_x_nodes;i++) { 
    for (j=0;j<fl_y_nodes; j++) { 
      //BF 
      bottom_fl[i][j]->x=x_grid[i]; 
      bottom_fl[i][j]->y=y_grid[j]; 
      bottom_fl[i][j]->z=0; 
      bottom_fl[i][j]->toprint=1; 
      //TF 
      top_fl[i][j]->x=x_grid[i]; 
      top_fl[i][j]->y=y_grid[j]; 
      top_fl[i][j]->z=depth; 
      top_fl[i][j]->toprint=1; 
    } 
  } 
} //okHoneyCombSlab::AllocateNodeArrays() 
//functions describing different shapes of waves 
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double okHoneyCombSlab::f(okRib r, double x) { 
  switch (r.t) { 
    case 0: return 0; 
    //value goes from the "lower edge" of the flute 
    case 1: return (0.5*r.flutewidth*(1+sin(M_PI*x/(2*r.quarterwavelength)))); 
    case 2: return (0.5*r.flutewidth*(1+sin(M_PI/2+M_PI*x/(2*r.quarterwavelength)))); 
    case 3: return (0.5*r.flutewidth*(1+sin(M_PI+M_PI*x/(2*r.quarterwavelength)))); 
    case 4: return (0.5*r.flutewidth*(1+sin(M_PI*1.5+M_PI*x/(2*r.quarterwavelength)))); 
    default: return 211; 
  } 
} //okHoneyCombSlab::f(web shape, double x) 
int okHoneyCombSlab::AddRib(int index) { 
  int i,j; 
  //node shift in x direction 
  int ns=fl_x_nodes_over-1; 
  if (pattern[index].invisible==1) {return index;} 
  for (i=pattern[index].beg-ns; i<=pattern[index].end-ns; i++) { 
    for (j=0; j<nodes_per_depth; j++) { 
      web_nodes[i][index][j]->x=x_grid[i+ns]; 
      //add ofset using low 
      web_nodes[i][index][j]->y=y_grid[pattern[index].low]+f(pattern[index],x_grid[i+ns]-co_x); 
      web_nodes[i][index][j]->z=z_grid[index][j]; 
      web_nodes[i][index][j]->toprint=1; 
    } 
  } 
  return 0; 
} //okHoneyCombSlab::AddRib(int index) 
void okHoneyCombSlab::AddRibs() { 
  int i; for (i=0; i<flat_no+flute_no; i++) {AddRib(i);} 
} 
//prints cut through the core to the file 
/* 
unfortunately (due to the regular rectangular character of array) 
works only for ribs running from beginning to the end 
*/ 
void okHoneyCombSlab::PrintCoreToFile(char* filename) { 
  int i,j; 
  ofstream file(filename); 
  file << "Columns follows the x axis of the slab!\n"; 
  file << "1st column is x coordinate for all nodes, followed by y coordinates for each row\n"; 
  for (i=0; i<co_x_nodes; i++) { 
    file << setw(8) << setprecision(3) << web_nodes[i][0][0]->x; 
    for (j=0; j<flute_no+flat_no; j++) { 
      file.flags(ios::fixed); 
      file << setw(8) << setprecision(3) << web_nodes[i][j][0]->y; 
    } 
    file << "\n"; 
  } 
} //okHoneyCombSlab::PrintCoreToFile(char* filename) 
void okHoneyCombSlab::MergeNodes() { 
  int i,j,k,l,merge,CritNode; 
  //nsx, nsy: node shift of flange nodes indexing to core nodes indexing 
  int nsy=fl_y_nodes_over-1; 
  int nsx=fl_x_nodes_over-1; 
  double dist; 
  //--------------------- 



 252

  //merge web nodes first 
  for (i=0; i<co_x_nodes; i++) { 
    for (j=0; j<nodes_per_depth; j++) { 
      for (merge=0; merge<flat_no+flute_no; merge++) { 
 
        //there can be only following or "next 2" following ribs to merge 
        if (merge+1<flat_no+flute_no) { 
          if (ABS(web_nodes[i][merge][j]->y-web_nodes[i][merge+1][j]->y)<SMALL_NO) { 
            if (web_nodes[i][merge][j]->toprint) { 
       web_nodes[i][merge+1][j]=web_nodes[i][merge][j];} 
            if (web_nodes[i][merge+1][j]->toprint) { 
              web_nodes[i][merge][j]=web_nodes[i][merge+1][j];} 
          } //if 
        } //if 
        if (merge+2<flat_no+flute_no) { 
          if (ABS(web_nodes[i][merge][j]->y-web_nodes[i][merge+2][j]->y)<SMALL_NO) { 
            if (web_nodes[i][merge][j]->toprint) { 
       web_nodes[i][merge+2][j]=web_nodes[i][merge][j];} 
            if (web_nodes[i][merge+2][j]->toprint) { 
              web_nodes[i][merge][j]=web_nodes[i][merge+2][j];} 
          } //if 
        } //if 
 
      } //for merge= 
    } //for j= 
  } //for i= 
  //------------------------------------- 
  //flats nodes are taken care of in here 
  for (i=0; i<co_x_nodes; i++) { 
    for (merge=0; merge<flat_no+flute_no; merge++) { 
      if (pattern[merge].t!=0) continue; 
      for (j=0; j<co_y_nodes; j++) { 
        if (ABS(web_nodes[i][merge][0]->y-bottom_fl[i+nsx][j+nsy]->y)<SMALL_NO & 
     (web_nodes[i][merge][0]->toprint)) { 
          bottom_fl[i+nsx][j+nsy]=web_nodes[i][merge][0]; 
          bottom_fl[i+nsx][j+nsy]->fixed=true; 
          top_fl[i+nsx][j+nsy]=web_nodes[i][merge][nodes_per_depth-1]; 
          top_fl[i+nsx][j+nsy]->fixed=true; 
          break; 
        } // if 
      } //for j= 
    } //for merge= 
  } //for i= 
  //------------------------------------- 
  //flute nodes are taken care of in here 
  for (i=0; i<co_x_nodes; i++) { 
    for (merge=0; merge<flat_no+flute_no; merge++) { 
      if (pattern[merge].t==0) continue; 
      //to get some initial starting distance 
      dist=y_grid[co_y_nodes-1+nsy]-y_grid[nsy]; 
      CritNode=-1; //for !...->toprint cases 
      for (j=0; j<co_y_nodes; j++) { 
 if ((ABS(web_nodes[i][merge][0]->y-bottom_fl[i+nsx][j+nsy]->y)<SMALL_NO) & 
     (web_nodes[i][merge][0]->toprint)) { 
          CritNode=j; 
          break; 
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        } //if 
        if ((dist>ABS(web_nodes[i][merge][0]->y-bottom_fl[i+nsx][j+nsy]->y))& 
            (!bottom_fl[i+nsx][j+nsy]->fixed) & 
     (web_nodes[i][merge][0]->toprint)) { 
   CritNode=j; 
          dist=ABS(web_nodes[i][merge][0]->y-bottom_fl[i+nsx][j+nsy]->y); 
        } //if 
      } //for j= 
      if (CritNode!=-1) { 
        bottom_fl[i+nsx][CritNode+nsy]=web_nodes[i][merge][0]; 
        bottom_fl[i+nsx][CritNode+nsy]->fixed=true; 
        top_fl[i+nsx][CritNode+nsy]=web_nodes[i][merge][nodes_per_depth-1]; 
        top_fl[i+nsx][CritNode+nsy]->fixed=true; 
      } //if 
    } //for merge= 
  } //for j= 
  //--------------------------------------------- 
  //make all fop_fl and bottom_fl nodes ->toprint 
  for (i=0; i<fl_x_nodes; i++) { 
    for (j=0; j<fl_y_nodes; j++) { 
      top_fl[i][j]->toprint=1; 
      bottom_fl[i][j]->toprint=1; 
    } //for j= 
  } //for i= 
  //-------------------- 
  //label (number) nodes 
  int actual=1; 
  //label first all by -1 
  for (i=0; i<fl_x_nodes; i++) { 
    for (j=0; j<fl_y_nodes; j++) { 
      bottom_fl[i][j]->no=-1; 
      top_fl[i][j]->no=-1; 
    } //for j= 
  } //for i= 
  for (i=0; i<co_x_nodes; i++) { 
    for (j=0; j<flat_no+flute_no; j++) { 
      //k=1 to nodes_per_depth-1 is why some nodes have number 0 
      for (k=1; k<nodes_per_depth-1; k++) {web_nodes[i][j][k]->no=-1;} 
    } //for j= 
  } //for i= 
 
  //label in ascending order 
  for (i=0; i<fl_x_nodes; i++) { 
    for (j=0; j<fl_y_nodes; j++) { 
      if (bottom_fl[i][j]->no==-1) {bottom_fl[i][j]->no=actual++;} 
      if (top_fl[i][j]->no==-1) {top_fl[i][j]->no=fl_x_nodes*fl_y_nodes+actual-1;} 
    } //for j= 
  } //for i= 
  actual=actual*2; 
  for (i=0; i<co_x_nodes; i++) { 
    for (j=0; j<flat_no+flute_no; j++) { 
      for (k=0; k<nodes_per_depth; k++) { 
        //nodes with no=-1 are those that won't be printed 
        if ((web_nodes[i][j][k]->no==-1) & web_nodes[i][j][k]->toprint) 
   {web_nodes[i][j][k]->no=actual++;} 
      } //for k= 
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    } //for j= 
  } //for i= 
  cout << "\nTotal nodes generated: " << actual; 
} //okHoneyCombSlab::MergeNodes() 
void okHoneyCombSlab::PrintFlangeToFile(char* filename) { 
  int i,j; 
  ofstream file(filename); 
  file << "Columns follows the x axis of the slab!\n"; 
  file << "1st column is x coordinate for all nodes, followed by y coordinates for each row\n"; 
  for (i=0;i<fl_x_nodes;i++) { 
    file << setw(8) << setprecision(3) << top_fl[i][0]->x; 
    for (j=0;j<fl_y_nodes;j++) { 
      file.flags(ios::fixed); 
      file << setw(8) << setprecision(3) << top_fl[i][j]->y; 
    } //for j= 
    file << "\n"; 
  } //for i= 
} //okHoneyCombSlab::PrintFlangeToFile(char* filename) 
void okHoneyCombSlab::PrintNodeFile(char* filename) { 
  int i,j,k; 
  ofstream file(filename); 
  //set printed=false for all nodes 
  for (i=0; i<fl_x_nodes; i++) { 
    for (j=0; j<fl_y_nodes; j++) { 
      bottom_fl[i][j]->printed=false; 
      top_fl[i][j]->printed=false; 
    } //for 
  } //for 
  for (i=0; i<co_x_nodes; i++) { 
    for (j=0; j<flat_no+flute_no; j++) { 
      for (k=0; k<nodes_per_depth; k++) {web_nodes[i][j][k]->printed=false;} 
    } //for 
  } //for 
 
  //print in ascending order 
  file << "!*************************\n"; 
  file << "!*Nodes of bottom flange:*\n"; 
  file << "!*************************\n"; 
  for (j=0; j<fl_y_nodes; j++) { 
    file << "!BF row #" << j << "\n"; 
    for (i=0; i<fl_x_nodes; i++) { 
      //if (!bottom_fl[i][j]->toprint) {file << "!";} 
      if (bottom_fl[i][j]->printed) {file << "!N,";} 
      if (!bottom_fl[i][j]->printed) {file << " N,";} 
      file << setw(10) << bottom_fl[i][j]->no << ","; 
      file << setw(10) /* << setprecision(2)*/ << bottom_fl[i][j]->x << ","; 
      file << setw(10) /* << setprecision(2)*/ << bottom_fl[i][j]->y << ","; 
      file << setw(10) /* << setprecision(2)*/ << bottom_fl[i][j]->z << "\n"; 
      bottom_fl[i][j]->printed=true; 
    } //for i= 
  } //for j= 
  file << "!**********************\n"; 
  file << "!*Nodes of top flange:*\n"; 
  file << "!**********************\n"; 
  for (j=0; j<fl_y_nodes; j++) { 
    file << "!TF row #" << j << "\n"; 
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    for (i=0; i<fl_x_nodes; i++) { 
      //if (!top_fl[i][j]->toprint) {file << "!";} 
      if (top_fl[i][j]->printed) {file << "!N,";} 
      if (!top_fl[i][j]->printed) {file << " N,";} 
      file << setw(10) << top_fl[i][j]->no << ","; 
      file << setw(10) /*<< setprecision(2)*/ << top_fl[i][j]->x << ","; 
      file << setw(10) /*<< setprecision(2)*/ << top_fl[i][j]->y << ","; 
      file << setw(10) /*<< setprecision(2)*/ << top_fl[i][j]->z << "\n"; 
      top_fl[i][j]->printed=true; 
    } //for i= 
  } //for j= 
  file << "!***************\n"; 
  file << "!*Nodes of web:*\n"; 
  file << "!***************\n"; 
  for (j=0; j<flat_no+flute_no; j++) { 
    for (k=0; k<nodes_per_depth; k++) { 
      file << "!Flute #" << j; 
      file << "; row #" << k << "\n"; 
      for (i=0; i<co_x_nodes; i++) { 
        if (!web_nodes[i][j][k]->toprint) { 
   file << "!N,"; 
          file << setw(10) << web_nodes[i][j][k]->no << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->x << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->y << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->z << ",invisible\n"; 
 } //if 
        else { 
          if (web_nodes[i][j][k]->printed) {file << "!N,";} 
          if (!web_nodes[i][j][k]->printed) {file << " N,";} 
          file << setw(10) << web_nodes[i][j][k]->no << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->x << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->y << ","; 
          file << setw(10) /*<< setprecision(2)*/ << web_nodes[i][j][k]->z << "\n"; 
          web_nodes[i][j][k]->printed=true; 
        } //else 
      } //for i= 
    } //for k= 
  } //for j= 
} //okHoneyCombSlab::PrintNodeFile(char* filename) 
void okHoneyCombSlab::PrintElementFile(char* filename) { 
  int i,j,k; 
  ofstream file(filename); 
  int v[4]; //whether to print rib elements 
  int repeat; //0,1,2,3 
  int actual=1; 
  file << "!****************************\n"; 
  file << "!*Elements of bottom flange:*\n"; 
  file << "!****************************\n"; 
  file << "TYPE,1" << "\n"; 
  for (j=0; j<fl_y_nodes-1; j++) { 
    file << "!BF row #" << j << "\n";; 
    for (i=0; i<fl_x_nodes-1; i++) { 
      file << "EN,"; 
      file << setw(5) << actual++ << ","; 
      file << setw(5) << bottom_fl[i][j]->no << ","; 
      file << setw(5) << bottom_fl[i+1][j]->no << ","; 
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      file << setw(5) << bottom_fl[i+1][j+1]->no << ","; 
      file << setw(5) << bottom_fl[i][j+1]->no << "\n"; 
    } 
  } 
  file << "!*************************\n"; 
  file << "!*Elements of top flange:*\n"; 
  file << "!*************************\n"; 
  for (j=0; j<fl_y_nodes-1; j++) { 
    file << "!TF row #" << j << "\n"; 
    for (i=0; i<fl_x_nodes-1; i++) { 
      file << "EN,"; 
      file << setw(5) << actual++ << ","; 
      file << setw(5) << top_fl[i][j]->no << ","; 
      file << setw(5) << top_fl[i+1][j]->no << ","; 
      file << setw(5) << top_fl[i+1][j+1]->no << ","; 
      file << setw(5) << top_fl[i][j+1]->no << "\n"; 
    } 
  } 
  file << "!******************\n"; 
  file << "!*Elements of web:*\n"; 
  file << "!******************\n"; 
  for (j=0; j<flat_no+flute_no; j++) { 
    for (k=0; k<nodes_per_depth-1; k++) { 
      file << "!Flute #" << j; 
      file << "; row #" << k << "\n"; 
      v[0]=0; v[1]=0; v[2]=0; v[3]=0; 
      for (i=0; i<co_x_nodes-1; i++) { 
        v[0]=web_nodes[i][j][k]->toprint; 
        v[1]=web_nodes[i+1][j][k]->toprint; 
        v[2]=web_nodes[i+1][j][k+1]->toprint; 
        v[3]=web_nodes[i][j][k+1]->toprint; 
        if (v[0]+v[1]+v[2]+v[3]==4) { 
          file << " EN,"; 
   file << setw(5) << actual++ << ","; 
   file << setw(5) << web_nodes[i][j][k]->no << ","; 
          file << setw(5) << web_nodes[i+1][j][k]->no << ","; 
          file << setw(5) << web_nodes[i+1][j][k+1]->no << ","; 
          file << setw(5) << web_nodes[i][j][k+1]->no << "\n"; 
        } //if 
        else { 
          file << "!EN,"; 
   file << setw(5) << actual++ << ","; 
   file << setw(5) << web_nodes[i][j][k]->no << ","; 
          file << setw(5) << web_nodes[i+1][j][k]->no << ","; 
          file << setw(5) << web_nodes[i+1][j][k+1]->no << ","; 
          file << setw(5) << web_nodes[i][j][k+1]->no << ",invisible\n"; 
        } //else 
      } //for i= 
    } //for k= 
  } //for j= 
  cout << "\nTotal elements generated: " << actual; 
} //okHoneyCombSlab::PrintElementFile(char* filename) 
int okHoneyCombSlab::ReadGrid(const char* filename) { 
  int i,j; 
  if (option==0) {return 0;} 
  else { 



 257

    Comments_Leave(filename); 
    ifstream file(filename); 
    for (i=0; i<fl_x_nodes; i++) {file >> x_grid[i];} 
    for (i=0; i<fl_y_nodes; i++) {file >> y_grid[i];} 
    for (i=0; i<flat_no+flute_no; i++) { 
      for (j=0; j<nodes_per_depth; j++) {file >> z_grid[i][j];} 
    } //for i= 
    Comments_Add(filename); 
  } //else 
  return(0); 
} //void ReadGrid(const char* filename) 
void okHoneyCombSlab::Select(char* filename) { 
  int i,j,index; 
   //write for writing selection information 
  char* write1; 
  char* write2; 
  //width of output stream for setw 
  int w=30; 
  ofstream file(filename); 
  file << "!**************************************\n"; 
  file << "!*Selection input macro file for ANSYS*\n"; 
  file << "!**************************************\n"; 
  for (index=0; index<sel_no; index++) { 
    file << setw(w) << "\n!Selection number: " << s[index].no; 
    file << setw(w) << "\n!Selection output: " << s[index].output; 
    file << setw(w) << "\n!Nodes (0) or elements (1): " << s[index].n0_e1; 
    file << setw(w) << "\n!BF (0), TF (1), WEB (2): " << s[index].part; 
    file << setw(w) << "\n!Web no (starting 0; -1 for BF or TF): " << s[index].web_no; 
    file << setw(w) << "\n!Input type (0: value coord.; 1: 'array' coord.): "; 
    file << s[index].input_type; 
    file << setw(w) << "\n!Coordinates (x,y,X,Y or xa,ya,Xa,Ya): "; 
    switch (s[index].input_type) { 
      case 0: file << s[index].x << "; "; 
              file << s[index].y << "; "; 
              file << s[index].X << "; "; 
              file << s[index].Y; break; 
      case 1: file << s[index].xa << "; "; 
              file << s[index].ya << "; "; 
              file << s[index].Xa << "; "; 
              file << s[index].Ya; break; 
      default: break; 
    } //switch 
    file << "\n"; 
    switch (s[index].output) { 
      case 0: write1=new char[3]; write1="D,\0"; 
              write2=new char[5]; write2=",ALL\0"; break; 
      case 1: write1=new char[14]; write1="nsel,a,node,,\0"; 
              write2=new char[2]; write2=" \0"; break; 
      case 2: write1=new char[14]; write1="esel,a,elem,,\0"; 
              write2=new char[2]; write2=" \0"; break; 
      case 3: write1=new char[3]; write1="D,\0"; 
              write2=new char[14]; write2=",UX,,,,,UY,UZ\0"; break; 
      case 4: write1=new char[3]; write1="D,\0"; 
              write2=new char[11]; write2=",UY,,,,,UZ\0"; break; 
      case 5: write1=new char[3]; write1="D,\0"; 
              write2=new char[13]; write2=",UX,,,,,ROTY\0"; break; 
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      case 6: write1=new char[3]; write1="D,\0"; 
              write2=new char[23]; write2=",UX,,,,,ROTX,ROTY,ROTZ\0"; break; 
      default: break; 
    } //switch 
 
    //core nodes shift related to flange 
    int nsx=fl_x_nodes_over-1; 
    int nsy=fl_y_nodes_over-1; 
gdbdebug(); 
    //creation of array coordinates, if not available 
    if (s[index].input_type==0) { 
      //longitudinal coordinates for both flanges and web 
      if (s[index].part<2) { 
        //bottom or top flange xa and Xa 
        for (i=0; i<fl_x_nodes; i++) { 
          if (s[index].x<x_grid[i]) {s[index].xa=i-1; break;} 
        } 
        for (i=fl_x_nodes-1; i>=0; i--) { 
          if (s[index].X>x_grid[i]) {s[index].Xa=i+1; break;} 
        } 
        //bottom or top flange ya and Ya 
 for (i=0; i<fl_y_nodes; i++) { 
          if (s[index].y<y_grid[i]) {s[index].ya=i-1; break;} 
        } 
        for (i=fl_y_nodes-1; i>=0; i--) { 
          if (s[index].Y>y_grid[i]) {s[index].Ya=i+1; break;} 
        } 
      } //if 
      else { 
        //web xa and Xa 
        for (i=0; i<co_x_nodes; i++) { 
          if (s[index].x<x_grid[i+nsx]) {s[index].xa=i-1; break;} 
        } //for 
        for (i=co_x_nodes-1; i>=0; i--) { 
          if (s[index].X>x_grid[i+nsx]) {s[index].Xa=i+1; break;} 
        } 
        //web ya and Ya (or za and Za) 
 for (i=0; i<nodes_per_depth; i++) { 
          if (s[index].y<z_grid[index][i]) {s[index].ya=i-1; break;} 
        } //for 
        for (i=nodes_per_depth-1; i>=0; i--) { 
          if (s[index].Y>z_grid[index][i]) {s[index].Ya=i+1; break;} 
        } 
      } //else 
    } //if "array coordinates" need to be calculated 
 
    //node selection 
    if (s[index].n0_e1==0) { 
      switch (s[index].part) { 
        case 0: //BF 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
            for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              file << bottom_fl[i][j]->no; 
              file << write2 << "\n"; 
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            } //for 
          } //for 
        break; 
        case 1: //TF 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
     for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              file << top_fl[i][j]->no; 
              file << write2 << "\n"; 
            } //for 
          } //for 
        break; 
        case 2: //WEB 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
     for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              file << web_nodes[i][s[index].web_no][j]->no; 
              file << write2 << "\n"; 
            } //for 
          } //for 
        break; 
        default: break; 
      } //switch 
    } //if node selection 
    //element selection 
    int number=0; 
    if (s[index].n0_e1==1) { 
      switch (s[index].part) { 
        case 0: //BF 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
            for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              number = 1+(fl_x_nodes-1)*j+i; //just bottom flange 
              file << number; 
              file << write2 << "\n"; 
            } //for 
          } //for 
        break; 
        case 1: //TF 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
            for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              number = 1+(fl_x_nodes-1)*(fl_y_nodes-1); //bottom flange 
       number = number+(fl_x_nodes-1)*j+i; //addition from top flange 
              file << number; 
              file << write2 << "\n"; 
            } //for 
          } //for 
        break; 
        case 2: //WEB 
          for (i=s[index].xa; i<=s[index].Xa; i++) { 
            file << "!Whatever(x direction) #: " << i << "\n"; 
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            for (j=s[index].ya; j<=s[index].Ya; j++) { 
              file << write1; 
              number = 1+2*(fl_x_nodes-1)*(fl_y_nodes-1); //flanges 
              number = number+s[index].web_no*(co_x_nodes-1)*(nodes_per_depth-1); //preceding webs 
              number = number+(co_x_nodes-1)*j+i; 
              file << number; 
              file << write2 << "\n"; 
            } //for 
          } //for 
        break; 
        default: break; 
      } //switch 
    } //if element selection 
  } //for (index=0; index<sel_no; index++) 
} //okHoneyCombSlab::Select(char* filename) 
void SelectAll() { 
} //okHoneyCombSlab::SelectAll() 
//node.h 
#if !defined(_NODE_H) 
#define _NODE_H 
class okNode { 
public: 
  okNode() {no=0; x=0; y=0; z=0; fixed=0; toprint=0; printed=0;} 
  double x,y,z;  //node coordinates 
  int no;  //node number (important for ANSYS) 
  //int users;  //number of "users" (eg. 3 for bottom flange, flat and flute) 
  int printed;  //for printing into the file finds out whether the node was already printed 
  int fixed;  //nodes of bottom flange that cannot be shifted 
  int toprint;  //where the core doesn't continue 
  //okNode* master; //"master node" in the case the case that several nodes are overlapping 
}; //class okNode 
enum subpart {BF,TF,WEB}; 
enum web {flat, flute_sin0, flute_sin90, flute_sin180, flute_sin270}; 
//type of single web (self-explanatory) 
class okSelection { 
public: 
  int output; //0 for D, 
              //1 for NSEL, 
              //2 for ESEL, 
  int no; //selection number 
  int n0_e1;//0 for node selection, 1 for element selection 
  subpart part; //enum type {BF, TF, WEB} 
  int web_no; //starting zero, -1 for BF or TF 
  int input_type; //0 for value coordiates, 1 for "array coordinates" 
  int xa, ya, Xa,Ya; //"array coordinates" 
  double x, y, X, Y; //value coordinates 
}; //class okNodeSelection 
class okRib { 
public: 
  web t; 
  double x, y, X; 
  double flutewidth; 
  int nodes_per_flutewidth; 
  double quarterwavelength; 
  int nodes_per_quarterwavelength; 
  int invisible; 
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  int lastflute; 
  int beg, end; 
  int low, top; 
  /* 
  if the rib does not run through the whole length of the core, 
  this says where is beginning and end in array coordinates 
  */ 
}; //class okRib 
#endif 
 
Header File (node.h) 
 
//node.h 
#if !defined(_NODE_H) 
#define _NODE_H 
class okNode { 
public: 
  okNode() {no=0; x=0; y=0; z=0; fixed=0; toprint=0; printed=0;} 
  double x,y,z;  //node coordinates 
  int no;  //node number (important for ANSYS) 
  //int users;  //number of "users" (eg. 3 for bottom flange, flat and flute) 
  int printed;  //for printing into the file finds out whether the node was already printed 
  int fixed;  //nodes of bottom flange that cannot be shifted 
  int toprint;  //where the core doesn't continue 
  //okNode* master; //"master node" in the case the case that several nodes are overlapping 
}; //class okNode 
enum subpart {BF,TF,WEB}; 
enum web {flat, flute_sin0, flute_sin90, flute_sin180, flute_sin270}; 
//type of single web (self-explanatory) 
class okSelection { 
public: 
  int output; //0 for D, 
              //1 for NSEL, 
              //2 for ESEL, 
  int no; //selection number 
  int n0_e1;//0 for node selection, 1 for element selection 
  subpart part; //enum type {BF, TF, WEB} 
  int web_no; //starting zero, -1 for BF or TF 
  int input_type; //0 for value coordiates, 1 for "array coordinates" 
  int xa, ya, Xa,Ya; //"array coordinates" 
  double x, y, X, Y; //value coordinates 
}; //class okNodeSelection 
class okRib { 
public: 
  web t; 
  double x, y, X; 
  double flutewidth; 
  int nodes_per_flutewidth; 
  double quarterwavelength; 
  int nodes_per_quarterwavelength; 
  int invisible; 
  int lastflute; 
  int beg, end; 
  int low, top; 
  /* 
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  if the rib does not run through the whole length of the core, 
  this says where is beginning and end in array coordinates 
  */ 
}; //class okRib 
#endif 
 
Header File (util_ok1.h) 
 
#include <fstream.h> 
#include <stdio.h> 
#include <string.h> 
/*Nasledujici funkce vypusti ze souboru, jehoz jmeno je ji predano jako 
  parametr vsechny komentare - pricemz za komentar je povazovan libovolny 
  text od znaku * ("hvezdicka") az do konce radky. Namisto komentaru jsou do 
  puvodniho souboru vlozeny mezera. Tento tedy zabira stale stejnou pamet. 
  Komentare nejsou vymazany, ale jsou ulozeny do stejne pojmenovaneho souboru 
  s priponou .lcf (Left Comments File - vzdy je vytvoren prazdny soubor), 
  ktery se vyuziva pri rekonstrukci 
  puvodniho souboru - viz dalsi funkce Comments_Add. Obe funkce se musi pozivat 
  synchronizovane!!! Kazdemu komentari navic predchazi pozice jeho prvniho znaku 
  v puvodnim souboru - toto je dulezite pro rekonstrukci.*/  
void Comments_Leave(const char* file_name) { 
    //musime otevrit pro zapis i pro cteni 
    fstream input_file(file_name, ios::in | ios::out /*| ios::nocreate*/); 
    //cout << file_name << "  " << strlen(file_name); 
    //musime vytvorit nahradni jmeno pro soubor s komentari  
    int DelkaJmena,i; 
    DelkaJmena=strlen(file_name); 
    for (i=0; i<DelkaJmena; i++) { 
        if (file_name[i]=='.') {DelkaJmena=i; break;} 
    } 
    char* left_comments_file_name = new char[DelkaJmena+5];  
    for (i=0; i<DelkaJmena; i++) { 
        left_comments_file_name[i]=file_name[i]; 
    } 
    //vytvarime soubor s priponou .lcf 
    left_comments_file_name[DelkaJmena]='.'; 
    left_comments_file_name[DelkaJmena+1]='l';         
    left_comments_file_name[DelkaJmena+2]='c'; 
    left_comments_file_name[DelkaJmena+3]='f'; 
    left_comments_file_name[DelkaJmena+4]='\0'; 
    //cout << "  " << left_comments_file_name << "\n"; 
    //cout << "vstupni proud * vystupni proud\n"; 
    //dale ulozi komentare do vytvoreneho souboru 
    fstream output_file(left_comments_file_name, ios::out | ios::trunc /*| ios::noreplace*/); 
    char c;     
    bool Komentar=false;               
    bool PisCisloPozice=true;     //zda ma psat do vystupniho souboru cislo pozice 
    bool ZvetsiI=false;           //kvuli tomu, ze \n zabira 2bajty (ale je to jeden znak)  
    int PocetZnakuVSouboru; 
   //zjistime velikost vstupniho souboru 
    input_file.seekg(0, ios::end); 
    PocetZnakuVSouboru=input_file.tellg(); 
    input_file.seekg(0); 
    /*i se modifikuje i uvnitr cyklu, pokud je nacten znak konce radky \n, 
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      ktery se uklada jako dva znaky - viz promenna ZvetsiI*/ 
    for (i=0; i<PocetZnakuVSouboru; i++) {   
        if (ZvetsiI) {i++; ZvetsiI=false;} 
        input_file.seekg(i);  //musime nastavit na aktualni pozici pro cteni (jde zlepsit!) 
        input_file.get(c); 
        if (c=='\n') {PisCisloPozice=true; ZvetsiI=true;} 
        //neni komentar 
        if (!Komentar && (c!='*')) {                              
            continue; 
        } 
        //jsme uvvnitr komentare 
        if (Komentar && (c!='\n')) { 
            output_file.put(c); 
            input_file.seekp(i); 
            input_file.put(' ');  //ve vstupnim souboru prepisujeme komentar mezerou 
            continue; 
        }  
        //konec komentare 
        if (Komentar && (c=='\n')) { 
            Komentar=false;           
            output_file.put('\n');              
            continue; 
        }         
        //zacatek komentare 
        if (!Komentar && (c=='*')) { 
            if (PisCisloPozice) { 
                output_file << input_file.tellg()-1 << " "; 
                PisCisloPozice=false; 
            }                
            output_file.put(c); 
            input_file.seekp(i); 
            if (c=='\n') {input_file.put('\n');}  
            else input_file.put(' ');          
            Komentar=true; 
            continue; 
        }            
     } //while     
} //Comments_Leave 
/*Nasledujici funkce zajisti rekonstrukci souboru, ze kterych byly odstraneny 
  komentare funkci Comments_Leave. Na mista specifikovana v soubouru s priponou 
  .lcf jsou opet vlozeny komentare a soubor s priponou .lcf je smazan, aby 
  zbytecne nezabiral pamet.*/ 
void Comments_Add(const char* file_name) { 
    /*musime otevrit pro zapis (ale i pro vystup, protoze jinak po otevreni obsahuje 
      pouze mezery*/ 
    fstream output_file(file_name, ios::out | ios::in /*| ios::nocreate*/); 
    //cout << file_name << "  " << strlen(file_name); 
    //musime vytvorit nahradni jmeno pro soubor s komentari  
    int DelkaJmena,i; 
    DelkaJmena=strlen(file_name); 
    for (i=0; i<DelkaJmena; i++) { 
        if (file_name[i]=='.') {DelkaJmena=i; break;} 
    } 
    char* left_comments_file_name = new char[DelkaJmena+5];  
    for (i=0; i<DelkaJmena; i++) { 
        left_comments_file_name[i]=file_name[i]; 
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    } 
    left_comments_file_name[DelkaJmena]='.'; 
    left_comments_file_name[DelkaJmena+1]='l';         
    left_comments_file_name[DelkaJmena+2]='c'; 
    left_comments_file_name[DelkaJmena+3]='f'; 
    left_comments_file_name[DelkaJmena+4]='\0'; 
    //cout << "  " << left_comments_file_name << "\n"; 
    //cout << "vstupni proud * vystupni proud\n"; 
    //dale vlozime komentare zpet do puvodniho souboru 
    fstream input_file(left_comments_file_name, ios::in /*| ios::nocreate*/); 
    char c; 
    int NaPozici; 
    int PocetZnakuSouboru;          
    //zjistime pocet znaku ve vstupnim souboru 
    input_file.seekg(0, ios::end); 
    PocetZnakuSouboru=input_file.tellg(); 
    input_file.seekg(0); 
    while ((PocetZnakuSouboru-1)>input_file.tellg()) { 
        input_file >> NaPozici;       //precteme na jakou pozici mame vlozit 
        //cout << NaPozici << "  "; 
        output_file.seekp(NaPozici);  //nastavime kam budeme kopirovat 
        input_file.get(c);            //preskocime mezeru a dale uz jen kopirujeme 
        while(c!='\n') { 
            input_file.get(c); 
            output_file.put(c); 
        } 
        //na konci musime preskocit znak noveho radku \n 
        input_file.seekg(input_file.tellg()); 
    } //while 
    //nakonec zbyva vymazat nepotrebny pomocny soubor 
    input_file.close(); 
    //cout << "remove:" << remove(left_comments_file_name) << "\n"; 
    remove(left_comments_file_name); 
} //Comments_Add 
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APPENDIX B: MATLAB PROGRAM SCRIPT FOR 

GENERATION OF INPUT FILE 

A=zeros(12,1); B=zeros(1,9); 
Option = input('option:  '); A(1,1)=Option; 
xFlangcoord = input('Enter x coordinate of flange:  '); A(2,1)=xFlangcoord; 
yFlangcoord = input('Enter y coordinate of flange:  '); A(3,1)=yFlangcoord; 
XFlangcoord = input('Enter X coordinate of flange:  '); A(4,1)=XFlangcoord; 
YFlangcoord = input('Enter Y coordinate of flange:  '); A(5,1)=YFlangcoord; 
xCorecoord = input('Enter x coordinate of core:  '); A(6,1)=xCorecoord; 
yCorecoord = input('Enter y coordinate of core:  '); A(7,1)=yCorecoord; 
XCorecoord = input('Enter X coordinate of core:  '); A(8,1)=XCorecoord; 
YCorecoord = input('Enter Y coordinate of core:  '); A(9,1)=YCorecoord; 
Depth = input('Enter depth of slab:  '); A(10,1)=Depth; 
Defquartwave = input('Enter default quarterwavelength:  '); A(11,1)=Defquartwave; 
Deflutewidth = input('Enter default flutewidth:  '); A(12,1)=Deflutewidth; 
Nflutes = input('Enter number of flutes: '); B(1,1)=Nflutes; 
Nflats = input('Enter number of flats: '); B(1,2)=Nflats; 
xnodeover = input('Enter number of nodes per "overhang" for x:  '); B(1,3)=xnodeover; 
ynodeover = input('Enter number of nodes per "overhang" for y:  '); B(1,4)=ynodeover; 
Xnodeover = input('Enter number of nodes per "overhang" for X:  '); B(1,5)=Xnodeover; 
Ynodeover = input('Enter number of nodes per "overhang" for Y:  '); B(1,6)=Ynodeover; 
nodquartwave = input('Enter default nodes per quarterwavelength:  '); B(1,7)=nodquartwave; 
noddepth = input('Enter number of nodes per depth:  '); B(1,8)=noddepth; 
nodflut = input('Enter default nodes per flutewidth:  '); B(1,9)=nodflut; 
Type = input('Enter core configuration: 1 for "204", 2 for "0204", 3 for "402", 4 for "0402":  '); 
Core_width = YCorecoord-yCorecoord; 
N=(Core_width-2*Deflutewidth)/(2*Deflutewidth); 
k=Nflutes + Nflats; 
C=zeros(k+1,8); 
    k=1; 
if Type ~= 1 
    y=yCorecoord; 
    C(k,3)=y;  
    if Type == 4 
        k=k+1;  
        C(k,3)=y; C(1,1)=0; C(2,1)=4;       
        end     
    k=k+1; 
    if Type ~= 2 
    y=y+Deflutewidth; 
    if ((Type==3) | (Type==4)) 
       C(k,3)=y; 
       y=y+Deflutewidth; 
       k=k+1; 
       if Type==3 
           C(1,1)=4; C(2,1)=0; 
       end 
       end 
   end 
end 
   if ((Type==1) | (Type==2))  
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       y=yCorecoord+Deflutewidth; 
   end 
       C(k,3)=y; C(k,1)=2; 
       k=k+1;        
for a=1:N 
    for b=1:2 
        C(k,3)=y; 
        b=(k/2); c=round(k/2);            
          if Type==1; 
            if b==c 
            C(k,1)=0; 
        else 
            x=k+2; 
            C(k,1)=3+(round(sin(x*pi/2))); 
        end 
    end 
        if Type==2 
            if b ~= c 
            C(k,1)=0; 
            else 
                x=k+1; 
                C(k,1)=3+(round(sin(x*pi/2))); 
            end 
        end 
     if Type==3 
        if b == c 
            C(k,1)=0; 
            else                 
                C(k,1)=3+(round(sin(k*pi/2))); 
            end 
        end 
     if Type==4 
         if b ~= c 
            C(k,1)=0;    
        else 
            x=k-1; 
            C(k,1)=3+(round(sin(x*pi/2)));         
        end 
    end 
        k=k+1; 
        continue 
    end 
    for c=1:2 
        y=y+Deflutewidth; 
        C(k,3)=y;         
           b=(k/2); c=round(k/2);            
          if Type==1 
            if b==c 
            C(k,1)=0; 
        else 
            x=k+2; 
            C(k,1)=3+(round(sin(x*pi/2))); 
        end 
    end 
        if Type==2 
            if b ~= c 
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            C(k,1)=0; 
            else 
                x=k+1; 
                C(k,1)=3+(round(sin(x*pi/2))); 
            end 
        end 
     if Type==3 
        if b == c 
            C(k,1)=0; 
            else                 
                C(k,1)=3+(round(sin(k*pi/2))); 
            end 
        end 
     if Type==4 
         if b ~= c 
            C(k,1)=0;    
        else 
            x=k-1; 
            C(k,1)=3+(round(sin(x*pi/2)));         
        end 
    end 
        k=k+1; 
        continue 
    end 
    continue 
end 
  if Type ~=3 
        C(k,3)=y;  
        C(k,1)=C(k-4,1);  
        if Type ~=4; k=k+1; 
        C(k,3)=y; C(k,1)=C(k-4,1); 
            if Type==2; k=k+1; y=y+Deflutewidth; 
            C(k,3)=y; C(k,1)=C(k-4,1);           
        end 
    end 
end 
m=Nflutes+Nflats; 
for a=1:m 
    C(a,2)=xCorecoord; C(a,4)=XCorecoord; 
    C(a,7)=-1; C(a,8)=0; 
    if C(a,1)~=0 
       C(a,5)= -1; C(a,6)= -1; 
   else 
       C(a,5)=0; C(a,6)=1; 
   end 
   continue 
end 
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APPENDIX C: THERMAL COEFFICIENT OF EXPANSION COMPUTATION 

Ply Name k 
1
kα  *10-6(/ 

0C) 
2
kα  *10-6(/ 

0C) Q11
k

1
kα  Q12

k
2
kα  Q12

k
1
kα  Q22

k
2
kα  (Nx

T/ΔT)k (Ny
T/ΔT)k

Bond 
Layer 1 22.5588 22.5588 259.5649 102.2686 102.2686 259.5649 29.6703 29.6703 

CM3205 2 8.1114 25.4062 230.6420 61.5033 19.6362 208.4858 7.1576 5.5890 
CM3205 3 25.4062 8.1114 208.4858 19.6362 61.5033 230.6420 5.5890 7.1576 
CM3205 4 20.7706 20.7706 292.0877 117.4193 117.4193 292.0877 4.0951 4.0951 
UM1810 5 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
UM1810 6 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 7 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
UM1810 8 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 9 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
UM1810 10 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 11 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 12 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
UM1810 13 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 14 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
UM1810 15 17.8798 17.8798 342.0415 139.8950 139.8950 342.0415 6.3616 6.3616 
UM1810 16 7.7253 24.4050 238.0348 62.6685 19.8374 213.8856 7.5176 5.8431 
CM3205 17 20.7706 20.7706 292.0877 117.4193 117.4193 292.0877 4.0951 4.0951 
CM3205 18 25.4062 8.1114 208.4858 19.6362 61.5033 230.6420 5.5890 7.1576 
CM3205 19 8.1114 25.4062 230.6420 61.5033 19.6362 208.4858 7.1576 5.5890 

      
 

Summation = 146.6284 136.5814
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